def resnet_inference(image: flow.typing.Numpy.Placeholder(
     image_shape, dtype=flow.float32)) -> flow.typing.Numpy:
     input_lbns["image"] = image.logical_blob_name
     output = resnet50(image, trainable=False)
     output = flow.nn.softmax(output)
     output_lbns["output"] = output.logical_blob_name
     return output
Пример #2
0
    def __init__(self):
        super(Net, self).__init__()

        ## Modify dimensions based on model

        # resnet 18,34
        # self.proj0 = nn.Conv2d(512, 8192, kernel_size=1, stride=1)
        # self.proj1 = nn.Conv2d(512, 8192, kernel_size=1, stride=1)
        # self.proj2 = nn.Conv2d(512, 8192, kernel_size=1, stride=1)

        # resnet 50, ...
        self.proj0 = nn.Conv2d(2048, 8192, kernel_size=1, stride=1)
        self.proj1 = nn.Conv2d(2048, 8192, kernel_size=1, stride=1)
        self.proj2 = nn.Conv2d(2048, 8192, kernel_size=1, stride=1)

        # fc layer
        self.fc_concat = torch.nn.Linear(8192 * 3, 200)

        # for m in self.modules():
        #     if isinstance(m, nn.Conv2d):
        #         n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        #         m.weight.data.normal_(0, math.sqrt(2. / n))
        #     elif isinstance(m, nn.Linear):
        #         m.weight.data.normal_(0, 0.01)
        #         m.bias.data.zero_()

        self.softmax = nn.LogSoftmax(dim=1)
        self.avgpool = nn.AvgPool2d(kernel_size=14)

        ## select base-model
        # self.features = resnet_model.resnet34(pretrained=True,
        #                                       model_root='/data/guijun/HBP_finegrained/pth/resnet34.pth')
        self.features = resnet_model.resnet50(
            pretrained=True,
            model_root='/data/guijun/HBP_finegrained/pth/resnet50.pth')
Пример #3
0
    def __init__(self):
        super(Net, self).__init__()

        self.proj0 = nn.Conv2d(2048, 1024, kernel_size=1, stride=1)

        self.proj1 = nn.Conv2d(2048, 1024, kernel_size=1, stride=1)

        self.proj2 = nn.Conv2d(2048, 1024, kernel_size=1, stride=1)

        self.fc_concat = torch.nn.Linear(1024 * 196 * 3, 200)

        self.softmax = nn.LogSoftmax(dim=1)
        self.avgpool = nn.AvgPool2d(kernel_size=14)

        self.features = resnet_model.resnet50(
            pretrained=True, model_root='D:/Zhen/LMX/LMX/resnet50.pth')
Пример #4
0
def export_tfhub(model_path, hub_destination):
    """Restores a tf.keras.Model and saves for TF-Hub."""
    model = resnet_model.resnet50(
        num_classes=imagenet_preprocessing.NUM_CLASSES, rescale_inputs=True)
    model.load_weights(model_path)
    model.save(os.path.join(hub_destination, "classification"),
               include_optimizer=False)

    # Extracts a sub-model to use pooling feature vector as model output.
    image_input = model.get_layer(index=0).get_output_at(0)
    feature_vector_output = model.get_layer(
        name="reduce_mean").get_output_at(0)
    hub_model = tf.keras.Model(image_input, feature_vector_output)

    # Exports a SavedModel.
    hub_model.save(os.path.join(hub_destination, "feature-vector"),
                   include_optimizer=False)
Пример #5
0
def InferenceNet(images: tp.Numpy.Placeholder((1, 3, 224, 224),
                                              dtype=flow.float)) -> tp.Numpy:
    logits = resnet50(images, args, training=False)
    predictions = flow.nn.softmax(logits)
    return predictions
Пример #6
0
from load_dataset import VotTrainDataset
#from visualize import Visualizer
import numpy as np
from models import Yolov1_vgg16bn
from resnet_model import resnet18
from resnet_model import resnet50
from resnet_model import resnet101
use_gpu = torch.cuda.is_available()

file_root = '/home/xiec/DLCV/hw2-xiechen0692/hw2_train_val/'
#learning_rate = 0.002
learning_rate = 0.002
num_epochs = 50
batch_size = 8

net = resnet50()
resnet = models.resnet50(pretrained=True)
new_state_dict = resnet.state_dict()
dd = net.state_dict()
for k in new_state_dict.keys():
    print(k)
    if k in dd.keys() and not k.startswith('fc'):
        print('yes')
        dd[k] = new_state_dict[k]
net.load_state_dict(dd)
criterion = yoloLoss(7, 2, 5, 0.5)
if use_gpu:
    net.cuda()

net.train()
# different learning rate
Пример #7
0
  def __init__(self, flags_obj, time_callback):
    standard_runnable.StandardRunnableWithWarmup.__init__(
        self,
        flags_obj.use_tf_while_loop,
        flags_obj.use_tf_function)

    self.strategy = tf.distribute.get_strategy()
    self.flags_obj = flags_obj
    self.dtype = flags_core.get_tf_dtype(flags_obj)
    self.time_callback = time_callback

    # Input pipeline related
    batch_size = flags_obj.batch_size
    if batch_size % self.strategy.num_replicas_in_sync != 0:
      raise ValueError(
          'Batch size must be divisible by number of replicas : {}'.format(
              self.strategy.num_replicas_in_sync))

    steps_per_epoch, train_epochs = common.get_num_train_iterations(flags_obj)
    if train_epochs > 1:
      train_epochs = flags_obj.train_epochs

    # As auto rebatching is not supported in
    # `experimental_distribute_datasets_from_function()` API, which is
    # required when cloning dataset to multiple workers in eager mode,
    # we use per-replica batch size.
    self.batch_size = int(batch_size / self.strategy.num_replicas_in_sync)

    self.synthetic_input_fn = common.get_synth_input_fn(
        height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_preprocessing.NUM_CHANNELS,
        num_classes=self.flags_obj.num_classes,
        dtype=self.dtype,
        drop_remainder=True)

    if self.flags_obj.use_synthetic_data:
      self.input_fn = self.synthetic_input_fn
    else:
      self.input_fn = imagenet_preprocessing.input_fn

    resnet_model.change_keras_layer(flags_obj.use_tf_keras_layers)
    self.model = resnet_model.resnet50(
        num_classes=self.flags_obj.num_classes,
        batch_size=flags_obj.batch_size,
        use_l2_regularizer=not flags_obj.single_l2_loss_op)

    self.use_lars_optimizer = False
    self.num_accumulation_steps = self.flags_obj.num_accumulation_steps
    if self.flags_obj.optimizer == 'LARS':
      self.use_lars_optimizer = True
    self.optimizer, _ = common.get_optimizer(
        flags_obj=flags_obj,
        steps_per_epoch=steps_per_epoch,
        train_steps=steps_per_epoch * train_epochs)
    # Make sure iterations variable is created inside scope.
    self.global_step = self.optimizer.iterations

    if self.dtype == tf.float16:
      loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
      self.optimizer = (
          tf.keras.mixed_precision.experimental.LossScaleOptimizer(
              self.optimizer, loss_scale))
    elif flags_obj.fp16_implementation == 'graph_rewrite':
      # `dtype` is still float32 in this case. We built the graph in float32
      # and let the graph rewrite change parts of it float16.
      if not flags_obj.use_tf_function:
        raise ValueError('--fp16_implementation=graph_rewrite requires '
                         '--use_tf_function to be true')
      loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
      self.optimizer = (
          tf.train.experimental.enable_mixed_precision_graph_rewrite(
              self.optimizer, loss_scale))

    self.one_hot = False
    self.label_smoothing = flags_obj.label_smoothing
    if self.label_smoothing and self.label_smoothing > 0:
      self.one_hot = True

    if flags_obj.report_accuracy_metrics:
      self.train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
      if self.one_hot:
        self.train_accuracy = tf.keras.metrics.CategoricalAccuracy(
            'train_accuracy', dtype=tf.float32)
      else:
        self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'train_accuracy', dtype=tf.float32)
      self.test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
    else:
      self.train_loss = None
      self.train_accuracy = None
      self.test_loss = None

    if self.one_hot:
      self.test_accuracy = tf.keras.metrics.CategoricalAccuracy(
          'test_accuracy', dtype=tf.float32)
    else:
      self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
          'test_accuracy', dtype=tf.float32)
    # self.test_corrects = tf.keras.metrics.Sum(
    #     'test_corrects', dtype=tf.float32)
    self.num_eval_steps = common.get_num_eval_steps(flags_obj)

    self.checkpoint = tf.train.Checkpoint(
        model=self.model, optimizer=self.optimizer)

    # Handling epochs.
    self.epoch_steps = steps_per_epoch
    self.epoch_helper = utils.EpochHelper(steps_per_epoch, self.global_step)

    self.steps_per_loop = flags_obj.steps_per_loop
    profile_steps = flags_obj.profile_steps
    if profile_steps:
      profile_steps = [int(i) for i in profile_steps.split(',')]
      self.trace_start_step = profile_steps[0] if profile_steps[0] >= 0 else None
      self.trace_end_step = profile_steps[1]
    else:
      self.trace_start_step = None
      self.trace_end_step = None

    self.epochs_between_evals = flags_obj.epochs_between_evals
    self.training_vars = self.model.trainable_variables
    self.accum_grads = []
    self.accum_grads_dtype = tf.float32

    if self.num_accumulation_steps > 1:
      for var in self.training_vars:
        self.accum_grads.append(self.optimizer.add_weight(
            name=var.name + '_accum',
            shape=var.shape,
            dtype=self.accum_grads_dtype,
            initializer='zeros',
            trainable=False,
            synchronization=tf.VariableSynchronization.ON_READ,
            aggregation=tf.VariableAggregation.SUM))
def run(flags_obj):
  """Run ResNet ImageNet training and eval loop using custom training loops.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
  print('@@@@enable_eager = {}'.format(flags_obj.enable_eager))
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla)

  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == tf.float16:
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_float16')
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
  elif dtype == tf.bfloat16:
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_bfloat16')
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

  # This only affects GPU.
  common.set_cudnn_batchnorm_mode()

  # TODO(anj-s): Set data_format without using Keras.
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus,
      num_workers=distribution_utils.configure_cluster(),
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs,
      tpu_address=flags_obj.tpu)

  train_ds, test_ds = get_input_dataset(flags_obj, strategy)
  per_epoch_steps, train_epochs, eval_steps = get_num_train_iterations(
      flags_obj)
  steps_per_loop = min(flags_obj.steps_per_loop, per_epoch_steps)
  logging.info("Training %d epochs, each epoch has %d steps, "
               "total steps: %d; Eval %d steps",
               train_epochs, per_epoch_steps, train_epochs * per_epoch_steps,
               eval_steps)

  time_callback = keras_utils.TimeHistory(flags_obj.batch_size,
                                          flags_obj.log_steps)

  with distribution_utils.get_strategy_scope(strategy):
    resnet_model.change_keras_layer(flags_obj.use_tf_keras_layers)
    use_l2_regularizer = not flags_obj.single_l2_loss_op

    if flags_obj.use_resnet_d:
      resnetd = network_tweaks.ResnetD(image_data_format=tf.keras.backend.image_data_format(),
                                       use_l2_regularizer=use_l2_regularizer)
    else:
      resnetd = None

    model = resnet_model.resnet50(
        num_classes=imagenet_preprocessing.NUM_CLASSES,
        batch_size=flags_obj.batch_size,
        zero_gamma=flags_obj.zero_gamma,
        last_pool_channel_type=flags_obj.last_pool_channel_type,
        use_l2_regularizer=use_l2_regularizer,
        resnetd=resnetd)

    if flags_obj.learning_rate_decay_type == 'piecewise':
        lr_schedule = common.PiecewiseConstantDecayWithWarmup(
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            boundaries=list(p[1] for p in common.LR_SCHEDULE[1:]),
            multipliers=list(p[0] for p in common.LR_SCHEDULE),
            compute_lr_on_cpu=True)
    elif flags_obj.learning_rate_decay_type == 'cosine':
        lr_schedule = common.CosineDecayWithWarmup(
            base_lr=flags_obj.base_learning_rate,
            batch_size=flags_obj.batch_size,
            epoch_size=imagenet_preprocessing.NUM_IMAGES['train'],
            warmup_epochs=common.LR_SCHEDULE[0][1],
            train_epochs=flags_obj.train_epochs,
            compute_lr_on_cpu=True)
    else:
        raise NotImplementedError


    optimizer = common.get_optimizer(lr_schedule)

    if dtype == tf.float16:
      loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
      optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
          optimizer, loss_scale)
    elif flags_obj.fp16_implementation == 'graph_rewrite':
      # `dtype` is still float32 in this case. We built the graph in float32 and
      # let the graph rewrite change parts of it float16.
      if not flags_obj.use_tf_function:
        raise ValueError('--fp16_implementation=graph_rewrite requires '
                         '--use_tf_function to be true')
      loss_scale = flags_core.get_loss_scale(flags_obj, default_for_fp16=128)
      optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
          optimizer, loss_scale)

    current_step = 0
    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint = tf.train.latest_checkpoint(flags_obj.model_dir)
    if latest_checkpoint:
      checkpoint.restore(latest_checkpoint)
      logging.info("Load checkpoint %s", latest_checkpoint)
      current_step = optimizer.iterations.numpy()

    train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
    test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)

    categorical_cross_entopy_and_acc = losses.CategoricalCrossEntropyAndAcc(
                                          batch_size=flags_obj.batch_size,
                                          num_classes=imagenet_preprocessing.NUM_CLASSES,
                                          label_smoothing=flags_obj.label_smoothing)
    trainable_variables = model.trainable_variables

    def step_fn(inputs):
      """Per-Replica StepFn."""
      images, labels = inputs
      with tf.GradientTape() as tape:
        logits = model(images, training=True)
        loss = categorical_cross_entopy_and_acc.loss_and_update_acc(labels, logits, training=True)
        #loss = tf.reduce_sum(prediction_loss) * (1.0/ flags_obj.batch_size)
        num_replicas = tf.distribute.get_strategy().num_replicas_in_sync

        if flags_obj.single_l2_loss_op:
          l2_loss = resnet_model.L2_WEIGHT_DECAY * 2 * tf.add_n([
              tf.nn.l2_loss(v)
              for v in trainable_variables
              if 'bn' not in v.name
          ])

          loss += (l2_loss / num_replicas)
        else:
          loss += (tf.reduce_sum(model.losses) / num_replicas)

        # Scale the loss
        if flags_obj.dtype == "fp16":
          loss = optimizer.get_scaled_loss(loss)

      grads = tape.gradient(loss, trainable_variables)

      # Unscale the grads
      if flags_obj.dtype == "fp16":
        grads = optimizer.get_unscaled_gradients(grads)

      optimizer.apply_gradients(zip(grads, trainable_variables))
      train_loss.update_state(loss)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop."""
      for _ in tf.range(steps):
        strategy.experimental_run_v2(step_fn, args=(next(iterator),))

    def train_single_step(iterator):
      if strategy:
        strategy.experimental_run_v2(step_fn, args=(next(iterator),))
      else:
        return step_fn(next(iterator))

    def test_step(iterator):
      """Evaluation StepFn."""
      def step_fn(inputs):
        images, labels = inputs
        logits = model(images, training=False)
        loss = categorical_cross_entopy_and_acc.loss_and_update_acc(labels, logits, training=False)
        #loss = tf.reduce_sum(loss) * (1.0/ flags_obj.batch_size)
        test_loss.update_state(loss)

      if strategy:
        strategy.experimental_run_v2(step_fn, args=(next(iterator),))
      else:
        step_fn(next(iterator))

    if flags_obj.use_tf_function:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    if flags_obj.enable_tensorboard:
      summary_writer = tf.summary.create_file_writer(flags_obj.model_dir)
    else:
      summary_writer = None

    train_iter = iter(train_ds)
    time_callback.on_train_begin()
    for epoch in range(current_step // per_epoch_steps, train_epochs):
      train_loss.reset_states()
      categorical_cross_entopy_and_acc.training_accuracy.reset_states()

      steps_in_current_epoch = 0
      while steps_in_current_epoch < per_epoch_steps:
        time_callback.on_batch_begin(
            steps_in_current_epoch+epoch*per_epoch_steps)
        steps = _steps_to_run(steps_in_current_epoch, per_epoch_steps,
                              steps_per_loop)
        if steps == 1:
          train_single_step(train_iter)
        else:
          # Converts steps to a Tensor to avoid tf.function retracing.
          train_steps(train_iter, tf.convert_to_tensor(steps, dtype=tf.int32))
        time_callback.on_batch_end( steps_in_current_epoch+epoch*per_epoch_steps)
        steps_in_current_epoch += steps

      #temp_loss = array_ops.identity(categorical_cross_entopy_and_acc.training_loss).numpy()
      #temp_loss = categorical_cross_entopy_and_acc.training_loss.numpy()
      logging.info('Training loss: %s, accuracy: %s, cross_entropy: %s at epoch %d',
                   train_loss.result().numpy(),
                   categorical_cross_entopy_and_acc.training_accuracy.result().numpy(),
                   0.,
                   epoch + 1)

      if (not flags_obj.skip_eval and
          (epoch + 1) % flags_obj.epochs_between_evals == 0):
        test_loss.reset_states()
        categorical_cross_entopy_and_acc.test_accuracy.reset_states()

        test_iter = iter(test_ds)
        for _ in range(eval_steps):
          test_step(test_iter)

        logging.info('Test loss: %s, accuracy: %s%% at epoch: %d',
                     test_loss.result().numpy(),
                     categorical_cross_entopy_and_acc.test_accuracy.result().numpy(),
                     epoch + 1)

      if flags_obj.enable_checkpoint_and_export:
        checkpoint_name = checkpoint.save(
            os.path.join(flags_obj.model_dir,
                         'model.ckpt-{}'.format(epoch + 1)))
        logging.info('Saved checkpoint to %s', checkpoint_name)

      if summary_writer:
        current_steps = steps_in_current_epoch + (epoch * per_epoch_steps)
        with summary_writer.as_default():
          #tf.summary.scalar('train_cross_entropy', categorical_cross_entopy_and_acc.training_loss.numpy(), current_steps)
          tf.summary.scalar('train_loss', train_loss.result(), current_steps)
          tf.summary.scalar('train_accuracy', categorical_cross_entopy_and_acc.training_accuracy.result(),
                            current_steps)
          lr_for_monitor = lr_schedule(current_steps)
          if callable(lr_for_monitor):
            lr_for_monitor = lr_for_monitor()
          tf.summary.scalar('learning_rate', lr_for_monitor, current_steps)
          tf.summary.scalar('eval_loss', test_loss.result(), current_steps)
          tf.summary.scalar(
              'eval_accuracy', categorical_cross_entopy_and_acc.test_accuracy.result(), current_steps)

    time_callback.on_train_end()
    if summary_writer:
      summary_writer.close()

    eval_result = None
    train_result = None
    if not flags_obj.skip_eval:
      eval_result = [test_loss.result().numpy(),
                     categorical_cross_entopy_and_acc.test_accuracy.result().numpy()]
      train_result = [train_loss.result().numpy(),
                      categorical_cross_entopy_and_acc.training_accuracy.result().numpy()]

    stats = build_stats(train_result, eval_result, time_callback)
    return stats