Пример #1
0
def main(_):


	print 'reading npy...'

	data = np.load('../data/1st.npy')

	#jpg_list = np.load('64bin.npy')
	jpg_list = np.load('../data/nlcd+vae+image64/input_images_64.npy')
	test_order = np.load('../data/test.npy')
	print 'reading finished'

	sess = tf.Session()

	print 'building network...'
	hg = resnet_test.resnet(is_training=False)
	global_step = tf.Variable(0,name='global_step',trainable=False)

	merged_summary = tf.summary.merge_all()
	
	summary_writer = tf.summary.FileWriter(FLAGS.summary_dir,sess.graph)

	saver = tf.train.Saver(max_to_keep=None)
	saver.restore(sess,FLAGS.checkpoint_path)
	print 'restoring from '+FLAGS.checkpoint_path


	def test_step():

		print 'Testing...'

		all_ce_loss = 0
		all_output = []
		all_label = []
		
		batch_size = 18
		for i in range(int(len(test_order)/batch_size)):

			input_image = get_data.get_jpg_test(jpg_list,test_order[batch_size*i:batch_size*(i+1)])/128.0
			input_label = get_data.get_label(data,test_order[batch_size*i:batch_size*(i+1)])
			input_nlcd = get_data.get_nlcd(data,test_order[batch_size*i:batch_size*(i+1)])


			feed_dict={}
			feed_dict[hg.input_image]=input_image
			feed_dict[hg.input_label]=input_label
			feed_dict[hg.input_nlcd]=input_nlcd
			feed_dict[hg.keep_prob]=1.0

			ce_loss,output= sess.run([hg.ce_loss,hg.output],feed_dict)
			all_ce_loss += ce_loss
			for i in output:
				all_output.append(i)
			for i in input_label:
				all_label.append(i)

		all_output = np.array(all_output)
		all_label = np.array(all_label)
		#average_precision = average_precision_score(all_label,all_output)

		loglike = all_ce_loss/(int(len(test_order)/batch_size))

		np.save('output.npy',all_output)
		np.save('label.npy',all_label)
		
		auc = roc_auc_score(all_label,all_output)
		#loglike = log_likelihood(all_label,all_output)

		time_str = datetime.datetime.now().isoformat()

		tempstr = "{}: auc {:g}, log_likelihood {:g}".format(time_str, auc,loglike)
		print(tempstr)

		all_output=np.reshape(all_output,(-1))
		all_label=np.reshape(all_label,(-1))
		ap = average_precision_score(all_label,all_output)
		auc_2 = roc_auc_score(all_label,all_output)
		print 'ap:'+str(ap)
		print 'auc_2:'+str(auc_2)

	test_step()
Пример #2
0
def main(_):


	print 'reading npy...'

	data = np.load('../data/1st.npy')

	jpg_list = np.load('../data/32bin.npy')
	test_order = np.load('../data/test.npy')
	print 'reading finished'

	sess = tf.Session()

	print 'building network...'
	hg = resnet_test.resnet(is_training=False)
	global_step = tf.Variable(0,name='global_step',trainable=False)

	merged_summary = tf.summary.merge_all()
	
	summary_writer = tf.summary.FileWriter(FLAGS.summary_dir,sess.graph)

	saver = tf.train.Saver(max_to_keep=None)
	saver.restore(sess,FLAGS.checkpoint_path)
	print 'restoring from '+FLAGS.checkpoint_path


	def test_step():

		print 'Testing...'

		all_ce_loss = 0
		all_output = []
		all_label = []
		
		batch_size = 18
		for i in range(int(len(test_order)/batch_size)):

			input_image = get_data.get_jpg_test(jpg_list,test_order[batch_size*i:batch_size*(i+1)])
			input_label = get_data.get_label(data,test_order[batch_size*i:batch_size*(i+1)])

			feed_dict={}
			feed_dict[hg.input_image]=input_image
			feed_dict[hg.input_label]=input_label
			feed_dict[hg.keep_prob]=1.0

			ce_loss,output= sess.run([hg.ce_loss,hg.output],feed_dict)
			all_ce_loss += ce_loss
			for i in output:
				all_output.append(i)
			for i in input_label:
				all_label.append(i)

		all_output = np.array(all_output)
		all_label = np.array(all_label)
		#average_precision = average_precision_score(all_label,all_output)

		loglike = all_ce_loss/(int(len(test_order)/batch_size))

		np.save('output.npy',all_output)
		np.save('label.npy',all_label)
		
		auc = roc_auc_score(all_label,all_output)
		#loglike = log_likelihood(all_label,all_output)

		time_str = datetime.datetime.now().isoformat()

		tempstr = "{}: auc {:g}, log_likelihood {:g}".format(time_str, auc,loglike)
		print(tempstr)

		all_output=np.reshape(all_output,(-1))
		all_label=np.reshape(all_label,(-1))
		ap = average_precision_score(all_label,all_output)
		auc_2 = roc_auc_score(all_label,all_output)
		print 'ap:'+str(ap)
		print 'auc_2:'+str(auc_2)

	test_step()
o_path = os.getcwd()
sys.path.append(o_path)

from vgg_net import utils

from IP102.dataset_ip102 import Dataset_IP102, transform

file_dir = 'F:/5.datasets/ip102_v1.1/'
train_dataset = Dataset_IP102(file_dir, train=True, transforms=data_tf)
train_data = t.utils.data.DataLoader(
    train_dataset,
    batch_size=64,  #14
    shuffle=True,
    drop_last=True)

test_dataset = Dataset_IP102(file_dir, train=False, transforms=data_tf)
test_data = t.utils.data.DataLoader(
    test_dataset,
    batch_size=64,  #14
    shuffle=True,
    drop_last=True)

net = resnet(3, 102)
#optimizer = t.optim.SGD(net.parameters(),lr=0.001)
#test adam
optimizer = t.optim.Adam(net.parameters(), lr=0.01)

criterion = t.nn.CrossEntropyLoss()

utils.train(net, train_data, test_data, 20, optimizer, criterion, 'resnet')
Пример #4
0
def main(_):

    print 'reading npy...'
    #trainlist, labels = read_csv.train_data()

    #jpg_list = np.load('../jpg_1st.npy')
    data = np.load('../1st.npy')
    jpg_list = []
    for i in range(len(data)):
        jpg_list.append(str(i) + '.jpg')

    #train_order = np.load('../train.npy')
    #test_order = np.load('../test.npy')
    test_order = []
    for i in range(len(data)):
        test_order.append(i)

    sess = tf.Session()
    arg_scope = resnet_v2.resnet_arg_scope()

    print 'building network...'
    with slim.arg_scope(arg_scope):
        hg = resnet_test.resnet(is_training=False)
    init_fn = _get_init_fn()
    merged_summary = tf.summary.merge_all()
    summary_writer = tf.summary.FileWriter(FLAGS.summary_dir, sess.graph)

    sess.run(tf.initialize_all_variables())
    saver = tf.train.Saver(max_to_keep=None)
    init_fn(sess)
    print 'building finished'

    def test_step():

        print 'testing...'

        # all_ce_loss = 0
        # all_l2_loss = 0
        # all_total_loss = 0
        # all_output = []
        # all_label = []
        all_feature = []

        batch_size = 17 * 3
        for i in range(int(len(test_order) / batch_size)):

            input_image = get_data.get_jpg_test(
                jpg_list, test_order[batch_size * i:batch_size * (i + 1)])
            input_label = get_data.get_label(
                data, test_order[batch_size * i:batch_size * (i + 1)])

            feed_dict = {}
            feed_dict[hg.input_image] = input_image

            feature = sess.run(hg.feature, feed_dict)
            for i in feature:
                all_feature.append(i)
            # for i in input_label:
            # 	all_label.append(i)

        # all_output = np.array(all_output)
        # all_label = np.array(all_label)
        # #average_precision = average_precision_score(all_label,all_output)
        # np.save('output.npy',all_output)
        # np.save('label.npy',all_label)

        # auc = roc_auc_score(all_label,all_output)
        # loglike = log_likelihood(all_label,all_output)

        # time_str = datetime.datetime.now().isoformat()

        # tempstr = "{}: auc {:g}, log_likelihood {:g}".format(time_str, auc, loglike)
        # print(tempstr)

        # all_output=np.reshape(all_output,(-1))
        # all_label=np.reshape(all_label,(-1))
        # ap = average_precision_score(all_label,all_output)
        # auc_2 = roc_auc_score(all_label,all_output)

        # print 'ap:'+str(ap)
        # print 'auc_2:'+str(auc_2)
        np.save('resnet50_feature.npy', all_feature)

    test_step()
Пример #5
0
def main(_):


	print 'reading npy...'
	#trainlist, labels = read_csv.train_data()

	#jpg_list = np.load('../jpg_1st.npy')
	data = np.load('../1st.npy')
	jpg_list=[]
	for i in range(len(data)):
		jpg_list.append(str(i)+'.jpg')
	

	#train_order = np.load('../train.npy')
	#test_order = np.load('../test.npy')
	test_order = []
	for i in range(len(data)):
		test_order.append(i)

	sess = tf.Session()
	arg_scope = resnet_v2.resnet_arg_scope()

	print 'building network...'
	with slim.arg_scope(arg_scope):
		hg = resnet_test.resnet(is_training=False)
	init_fn = _get_init_fn()
	merged_summary = tf.summary.merge_all()
	summary_writer = tf.summary.FileWriter(FLAGS.summary_dir,sess.graph)

	sess.run(tf.initialize_all_variables())
	saver = tf.train.Saver(max_to_keep=None)
	init_fn(sess)
	print 'building finished'


	def test_step():

		print 'testing...'

		# all_ce_loss = 0
		# all_l2_loss = 0
		# all_total_loss = 0
		# all_output = []
		# all_label = []
		all_feature = []

		batch_size=17*3
		for i in range(int(len(test_order)/batch_size)):

			input_image = get_data.get_jpg_test(jpg_list,test_order[batch_size*i:batch_size*(i+1)])
			input_label = get_data.get_label(data,test_order[batch_size*i:batch_size*(i+1)])

			feed_dict={}
			feed_dict[hg.input_image]=input_image

			feature = sess.run(hg.feature,feed_dict)
			for i in feature:
				all_feature.append(i)
			# for i in input_label:
			# 	all_label.append(i)

		# all_output = np.array(all_output)
		# all_label = np.array(all_label)
		# #average_precision = average_precision_score(all_label,all_output)
		# np.save('output.npy',all_output)
		# np.save('label.npy',all_label)

		# auc = roc_auc_score(all_label,all_output)
		# loglike = log_likelihood(all_label,all_output)

		# time_str = datetime.datetime.now().isoformat()

		# tempstr = "{}: auc {:g}, log_likelihood {:g}".format(time_str, auc, loglike)
		# print(tempstr)

		# all_output=np.reshape(all_output,(-1))
		# all_label=np.reshape(all_label,(-1))
		# ap = average_precision_score(all_label,all_output)
		# auc_2 = roc_auc_score(all_label,all_output)

		# print 'ap:'+str(ap)
		# print 'auc_2:'+str(auc_2)
		np.save('resnet50_feature.npy',all_feature)


	test_step()