def main(_): roi_images = tf.placeholder(shape=[ net_config.BATCH_SIZE, net_config.ROI_SIZE_W, net_config.ROI_SIZE_H, net_config.IMAGE_CHANNEL ], dtype=np.float32, name='roi_input') expand_roi_images = tf.placeholder(shape=[ net_config.BATCH_SIZE, net_config.EXPAND_SIZE_W, net_config.EXPAND_SIZE_H, net_config.IMAGE_CHANNEL ], dtype=np.float32, name='expand_roi_input') labels_tensor = tf.placeholder(shape=[None], dtype=np.int32) is_training_tensor = tf.placeholder(dtype=tf.bool, shape=[]) logits = inference_small(roi_images, expand_roi_images, phase_names=['NC', 'ART', 'PV'], num_classes=4, is_training=is_training_tensor) save_model_path = '/home/give/PycharmProjects/MedicalImage/Net/forpatch/ResNetMultiPhaseMultiScale/model/parallel' train(logits, roi_images, expand_roi_images, labels_tensor, is_training_tensor, save_model_path=save_model_path, step_width=100)
def main(_): roi_images = tf.placeholder(shape=[ net_config.BATCH_SIZE, net_config.ROI_SIZE_W, net_config.ROI_SIZE_H, net_config.IMAGE_CHANNEL ], dtype=np.float32, name='roi_input') expand_roi_images = tf.placeholder(shape=[ net_config.BATCH_SIZE, net_config.EXPAND_SIZE_W, net_config.EXPAND_SIZE_H, net_config.IMAGE_CHANNEL ], dtype=np.float32, name='expand_roi_input') labels_tensor = tf.placeholder(shape=[None], dtype=np.int32) is_training_tensor = tf.placeholder(dtype=tf.bool, shape=[]) logits = inference_small(roi_images, expand_roi_images, phase_names=['NC', 'ART', 'PV'], num_classes=4, is_training=is_training_tensor, point_phase=[2]) save_model_path = '/home/give/PycharmProjects/ICPR2018/DeepLearning/Patch_ROI/models' train(logits, roi_images, expand_roi_images, labels_tensor, is_training_tensor, save_model_path=save_model_path, step_width=20, record_loss=False)
def main(_): roi_images = tf.placeholder(shape=[ net_config.BATCH_SIZE, net_config.ROI_SIZE_W, net_config.ROI_SIZE_H, net_config.IMAGE_CHANNEL ], dtype=np.float32, name='roi_input') expand_roi_images = tf.placeholder(shape=[ net_config.BATCH_SIZE, net_config.EXPAND_SIZE_W, net_config.EXPAND_SIZE_H, net_config.IMAGE_CHANNEL ], dtype=np.float32, name='expand_roi_input') labels_tensor = tf.placeholder(shape=[None], dtype=np.int32) is_training_tensor = tf.placeholder(dtype=tf.bool, shape=[]) logits, local_output_tensor, global_output_tensor, represent_feature_tensor = inference_small( roi_images, expand_roi_images, phase_names=['NC', 'ART', 'PV'], num_classes=4, is_training=is_training_tensor) save_model_path = '/home/give/PycharmProjects/MICCAI2018/deeplearning/Co-Occurrence/parameters/1' train(logits, local_output_tensor, global_output_tensor, represent_feature_tensor, roi_images, expand_roi_images, labels_tensor, is_training_tensor, save_model_path=save_model_path, step_width=100)