def load_image(self, image_index): """ Load an image at the image_index. """ path = os.path.join( self.data_dir, 'JPEGImages', self.image_names[image_index] + self.image_extension) return read_image_bgr(path)
def load_image(self, image_index): """ Load an image at the image_index. """ image_info = self.coco.loadImgs(self.image_ids[image_index])[0] path = os.path.join(self.data_dir, 'images', self.set_name, image_info['file_name']) return read_image_bgr(path)
exist_ok=True) shutil.copy( os.path.join(anns_path, i[:-4] + '.xml'), f'/home/palm/PycharmProjects/seven2/xmls/readjusted/{set_name}/' + i[:-4] + '.xml') continue if '<name>obj</name>' not in x: os.makedirs( f'/home/palm/PycharmProjects/seven2/xmls/readjusted/{set_name}/', exist_ok=True) shutil.copy( os.path.join(anns_path, i[:-4] + '.xml'), f'/home/palm/PycharmProjects/seven2/xmls/readjusted/{set_name}/' + i[:-4] + '.xml') continue image = read_image_bgr(os.path.join(folder, i)) start_time = time.time() # copy to draw ong draw = image.copy() draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB) # preprocess image for network image = preprocess_image(image) image, scale = resize_image(image, min_side=720, max_side=1280) # process image boxes, scores, labels = prediction_model.predict_on_batch( np.expand_dims(image, axis=0)) # correct for image scale boxes /= scale
def load_image(self, image_index): """ Load an image at the image_index. """ return read_image_bgr(self.images[image_index])
import time from boxutils import add_bbox if __name__ == '__main__': labels_to_names = [x.split(',')[0] for x in open('/home/palm/PycharmProjects/seven2/anns/c.csv').read().split('\n')[:-1]] model_path = '/home/palm/PycharmProjects/seven2/snapshots/infer_model_5.h5' model = models.load_model(model_path) dst = '/home/palm/PycharmProjects/seven/predict/1' path = '/home/palm/PycharmProjects/seven/data1/1' pad = 0 for image_name in os.listdir(path): p = os.path.join(path, image_name) image = read_image_bgr(p) # copy to draw on draw = image.copy() # preprocess image for network image = preprocess_image(image) image, scale = resize_image(image, min_side=720, max_side=1280) # process image start = time.time() boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0)) print("processing time: ", time.time() - start) # correct for image scale boxes /= scale
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) keras.backend.set_session(sess) if __name__ == '__main__': prediction_model = models.load_model('snapshots/infer_model_test.h5') root = '/media/palm/BiggerData/mine/new/i/' # srcs = [ # 'PU_23550891_00_20200905_214516_BKQ02-003', # 'PU_23550891_00_20200905_230000_BKQ02', # ] srcs = os.listdir(root) for p in srcs: src = os.path.join(root, p) os.makedirs(f'/media/palm/BiggerData/mine/out/i/{p}', exist_ok=True) for f in os.listdir(src): frame = read_image_bgr(os.path.join(src, f)) im = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frame = np.dstack((im, im, im)) frame, scale = resize_image(frame, min_side=720, max_side=1280) image = preprocess_image(frame) boxes, scores, labels = prediction_model.predict_on_batch( np.expand_dims(image, axis=0)) for box, score, label in zip(boxes[0], scores[0], labels[0]): # scores are sorted so we can break if score < 0.5: break b = box.astype(int) frame = add_bbox(frame, b, label, [ 'crane',
def load_image(self, image_index): return read_image_bgr(self.image_path(image_index))
names_to_labels = {} for x in open('/home/palm/PycharmProjects/seven2/anns/classes.csv').read( ).split('\n')[:-1]: names_to_labels[x.split(',')[0]] = int(x.split(',')[1]) query_path = '/home/palm/PycharmProjects/seven/images/cropped7/train' cache_path = '/home/palm/PycharmProjects/seven/caches' cache_dict = {} all_detections = [] all_annotations = [] known_classes = os.listdir(query_path) for instance in valid_ints: all_annotation = all_annotation_from_instance(instance, names_to_labels) image = read_image_bgr(instance["filename"]) t = time.time() # copy to draw ong draw = image.copy() # preprocess image for network image = preprocess_image(image) image, scale = resize_image(image, min_side=720, max_side=1280) # process image boxes, scores, labels = prediction_model.predict_on_batch( np.expand_dims(image, axis=0)) # correct for image scale