def transform(data, network, time_factor=1): x = data.placeholder from returnn.tf.compat import v1 as tf # summary("features", x) step = network.global_train_step step1 = tf.where(tf.greater_equal(step, 1000), 1, 0) step2 = tf.where(tf.greater_equal(step, 2000), 1, 0) def get_masked(): x_masked = x x_masked = random_mask( x_masked, batch_axis=data.batch_dim_axis, axis=data.time_dim_axis, min_num=step1 + step2, max_num=tf.maximum(tf.shape(x)[data.time_dim_axis] // 100, 2) * (1 + step1 + step2 * 2), max_dims=20 // time_factor) x_masked = random_mask(x_masked, batch_axis=data.batch_dim_axis, axis=data.feature_dim_axis, min_num=step1 + step2, max_num=2 + step1 + step2 * 2, max_dims=data.dim // 5) #summary("features_mask", x_masked) return x_masked x = network.cond_on_train(get_masked, lambda: x) return x
def transform(data, network, time_factor=1): x = data.placeholder from returnn.tf.compat import v1 as tf # summary("features", x) step = network.global_train_step step1 = tf.where(tf.greater_equal(step, 1000), 1, 0) step2 = tf.where(tf.greater_equal(step, 2000), 1, 0) def get_masked(): x_masked = x x_masked = random_mask( x_masked, batch_axis=data.batch_dim_axis, axis=data.time_dim_axis, min_num=step1 + step2, max_num=tf.maximum(tf.shape(x)[data.time_dim_axis] // 100, 2) * (1 + step1 + step2 * 2), max_dims=20 // time_factor) x_masked = random_mask(x_masked, batch_axis=data.batch_dim_axis, axis=data.feature_dim_axis, min_num=step1 + step2, max_num=2 + step1 + step2 * 2, max_dims=data.dim // 5) #summary("features_mask", x_masked) return x_masked cond1 = network.train_flag cond2 = tf.greater_equal( tf.shape(x)[data.time_dim_axis], 20) # ignore specaug for utterances less than 20 frames x = tf.cond(tf.logical_and(cond1, cond2), get_masked, lambda: x) return x
def transform(source, **kwargs): from returnn.tf.compat import v1 as tf data = source(0, as_data=True) time_factor = 1 # for switchout == 6 x = data.placeholder network = kwargs["self"].network from returnn.tf.compat import v1 as tf step = network.global_train_step step1 = tf.where(tf.greater_equal(step, 1000), 1, 0) step2 = tf.where(tf.greater_equal(step, 2000), 1, 0) def get_masked(): x_masked = x x_masked = random_mask( x_masked, batch_axis=data.batch_dim_axis, axis=data.time_dim_axis, min_num=step1 + step2, max_num=tf.maximum(tf.shape(x)[data.time_dim_axis] // 100, 2) * (1 + step1 + step2 * 2), max_dims=20 // time_factor) x_masked = random_mask(x_masked, batch_axis=data.batch_dim_axis, axis=data.feature_dim_axis, min_num=step1 + step2, max_num=2 + step1 + step2 * 2, max_dims=data.dim // 5) return x_masked x = network.cond_on_train(get_masked, lambda: x) return x
def random_mask(x, axis, min_num, max_num, max_dims): """ :param tf.Tensor x: (batch,time,feature) :param int axis: :param int|tf.Tensor min_num: :param int|tf.Tensor max_num: inclusive :param int max_dims: inclusive """ from returnn.tf.compat import v1 as tf n_batch = tf.shape(x)[0] num = tf.random_uniform(shape=(n_batch, ), minval=min_num, maxval=max_num + 1, dtype=tf.int32) # https://github.com/tensorflow/tensorflow/issues/9260 # https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/ z = -tf.log(-tf.log(tf.random_uniform((n_batch, tf.shape(x)[axis]), 0, 1))) _, indices = tf.nn.top_k(z, tf.reduce_max(num)) # indices should be sorted, and of shape (batch,num), entries (int32) in [0,dim) # indices = tf.Print(indices, ["indices", indices, tf.shape(indices)]) _, x = tf.while_loop( cond=lambda i, _: tf.less(i, tf.reduce_max(num)), body=lambda i, x: (i + 1, tf.where(tf.less(i, num), _mask(x, axis=axis, pos=indices[:, i], max_amount=max_dims), x)), loop_vars=(0, x)) return x
def _random_mask(x, axis, min_num, max_num, max_dims): from returnn.tf.compat import v1 as tf n_batch = tf.shape(x)[0] num = tf.random_uniform(shape=(n_batch, ), minval=min_num, maxval=max_num + 1, dtype=tf.int32) # https://github.com/tensorflow/tensorflow/issues/9260 # https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weighted-reservoir-sampling/ z = -tf.log( -tf.log(tf.random_uniform((n_batch, tf.shape(x)[axis]), 0, 1))) _, indices = tf.nn.top_k(z, tf.reduce_max(num)) # indices should be sorted, and of shape (batch,num), entries (int32) in [0,dim) # indices = tf.Print(indices, ["indices", indices, tf.shape(indices)]) res_mask = tf.zeros(shape=[n_batch, tf.shape(x)[axis]], dtype=tf.bool) # all False _, res_mask = tf.while_loop( cond=lambda i, _: tf.less(i, tf.reduce_max(num)), body=lambda i, res_mask: (i + 1, tf.where( tf.less(i, num), tf.math.logical_or( res_mask, _get_mask( x, axis=axis, pos=indices[:, i], max_amount=max_dims) ), res_mask)), loop_vars=(0, res_mask)) return res_mask # (batch,dim)