def test_Updater_simple_batch(): with make_scope() as session: from returnn.tf.network import TFNetwork, ExternData from returnn.config import Config from returnn.datasets.generating import Task12AXDataset dataset = Task12AXDataset() dataset.init_seq_order(epoch=1) extern_data = ExternData() extern_data.init_from_dataset(dataset) config = Config() network = TFNetwork(extern_data=extern_data, train_flag=True) network.construct_from_dict({ "layer1": { "class": "linear", "activation": "tanh", "n_out": 13, "from": "data:data" }, "layer2": { "class": "linear", "activation": "tanh", "n_out": 13, "from": ["layer1"] }, "output": { "class": "softmax", "loss": "ce", "target": "classes", "from": ["layer2"] } }) network.initialize_params(session=session) updater = Updater(config=config, network=network) updater.set_learning_rate(1.0, session=session) updater.set_trainable_vars(network.get_trainable_params()) updater.init_optimizer_vars(session=session) from returnn.tf.data_pipeline import FeedDictDataProvider batches = dataset.generate_batches( recurrent_net=network.recurrent, batch_size=100, max_seqs=10, max_seq_length=sys.maxsize, used_data_keys=network.used_data_keys) data_provider = FeedDictDataProvider(tf_session=session, extern_data=extern_data, data_keys=network.used_data_keys, dataset=dataset, batches=batches) feed_dict, _ = data_provider.get_feed_dict(single_threaded=True) session.run(updater.get_optim_op(), feed_dict=feed_dict)
def test_Updater_add_check_numerics_ops(): class _Layer(DummyLayer): def _get_loss_value(self): return tf_compat.v1.log(self.x) from returnn.tf.network import TFNetwork, ExternData from returnn.config import Config with make_scope() as session: config = Config() config.set("debug_add_check_numerics_ops", True) network = TFNetwork(extern_data=ExternData(), train_flag=True) network.add_layer(name="output", layer_class=_Layer, initial_value=1.0) network.initialize_params(session=session) updater = Updater(config=config, network=network) updater.set_learning_rate(1.0, session=session) updater.set_trainable_vars(network.get_trainable_params()) updater.init_optimizer_vars(session=session) # Should succeed. session.run(updater.get_optim_op()) # One gradient descent step from ln(x), x = 1.0: gradient is 1.0 / x, thus x - 1.0 = 0.0. assert_almost_equal( session.run(network.get_default_output_layer().output.placeholder), 0.0) try: # Now, should fail. session.run(updater.get_optim_op()) except tf.errors.InvalidArgumentError as exc: print("Expected exception: %r" % exc) else: assert False, "should have raised an exception"
def test_Updater_CustomUpdate(): with make_scope() as session: from returnn.tf.network import TFNetwork, ExternData from returnn.config import Config from returnn.tf.util.basic import CustomUpdate config = Config() network = TFNetwork(extern_data=ExternData(), train_flag=True) layer = network.add_layer(name="output", layer_class=DummyLayer, initial_value=4.0) assert isinstance(layer, DummyLayer) network.initialize_params(session=session) class CustomUpdateAdd13(CustomUpdate): def update_var(self, var): return tf_compat.v1.assign_add(var, 13.0) CustomUpdateAdd13().set_on_var(layer.x) updater = Updater(config=config, network=network) updater.set_learning_rate(1000.0, session=session) # should be ignored updater.set_trainable_vars(network.get_trainable_params()) updater.init_optimizer_vars(session=session) session.run(updater.get_optim_op()) # Should have applied CustomUpdateAdd13. assert_almost_equal( session.run(network.get_default_output_layer().output.placeholder), 17.0)
def test_base_get_output_shape_from_returnn_conv2d_dynamic(): with Naming.make_instance() as naming: assert isinstance(naming, Naming) x = torch.Tensor(64, 1, 11, 13) x_ = naming.register_tensor(x) x_.returnn_data = Data(name="x", shape=(1, None, None), feature_dim_axis=1) x_.returnn_axis_from_torch_axis = {0: 0, 1: 1, 2: 2, 3: 3} net = TFNetwork(extern_data=ExternData()) # E.g. conv layer, with padding "same". layer = InternalLayer(name="layer", network=net, out_type={"shape": (None, None, 32)}) torch_shape, returnn_axis_from_torch_axis = torch.nn.Module._base_get_output_shape_from_returnn( inputs_flat=[x], layer=layer) assert returnn_axis_from_torch_axis == {0: 0, 1: 3, 2: 1, 3: 2} assert torch_shape == (64, 32, 11, 13)
def test_Updater_GradientDescent(): with make_scope() as session: from returnn.tf.network import TFNetwork, ExternData from returnn.config import Config config = Config() network = TFNetwork(extern_data=ExternData(), train_flag=True) network.add_layer(name="output", layer_class=DummyLayer, initial_value=5.0, loss_value_factor=3.0) network.initialize_params(session=session) updater = Updater(config=config, network=network) updater.set_learning_rate(1.0, session=session) updater.set_trainable_vars(network.get_trainable_params()) updater.init_optimizer_vars(session=session) session.run(updater.get_optim_op()) # One gradient descent step from 3.0 * x: gradient is 3, thus 5 - 3 = 2. assert_almost_equal(session.run(network.get_default_output_layer().output.placeholder), 2.0)
def test_base_get_output_shape_from_returnn_2d_reorder_dynamic(): with Naming.make_instance() as naming: assert isinstance(naming, Naming) x = torch.Tensor(64, 1, 11, 13) x_ = naming.register_tensor(x) x_.returnn_data = Data(name="x", shape=(1, None, None), feature_dim_axis=1, auto_create_placeholders=True) x_.returnn_axis_from_torch_axis = {0: 0, 1: 1, 2: 2, 3: 3} y_data = x_.returnn_data.copy_move_axis(2, 3) assert y_data.get_dim_tag(3) == x_.returnn_data.get_dim_tag(2) net = TFNetwork(extern_data=ExternData()) # E.g. softmax_over_spatial with axis="stag:time1" layer = InternalLayer(name="layer", network=net, output=y_data) # We expect from all Torch modules, that they don't reorder the spatial axes. # (If they do, they explicitly would overwrite the output shape logic.) torch_shape, returnn_axis_from_torch_axis = torch.nn.Module._base_get_output_shape_from_returnn( inputs_flat=[x], layer=layer) assert returnn_axis_from_torch_axis == {0: 0, 1: 1, 2: 3, 3: 2} assert torch_shape == (64, 1, 11, 13)
def __init__(self, *, parent: Optional[ReturnnContext] = None, name: Optional[str] = None): self.parent = parent if parent: assert name self.config = parent.config self.tf_name_scope = parent.network.get_absolute_name_scope_prefix( ) + LayerBase.cls_get_tf_scope_name(name) assert parent.network.extern_data.data self.sub_net_layer = ( parent.network.add_layer( name=name, layer_class=SubnetworkLayer, # This is just a placeholder, will be replaced in define_output. sources=[parent.network.get_layer("data")], subnetwork={"output": { "class": "copy" }})) # type: SubnetworkLayer self._dummy_sub_output = self.sub_net_layer.subnetwork.layers[ "output"] else: self.config = Config({ # "debug_print_layer_output_template": True, }) self.tf_name_scope = "" self.sub_net_layer = None self._dummy_sub_output = None if self.sub_net_layer: self.network = self.sub_net_layer.subnetwork else: assert not parent self.network = TFNetwork( extern_data=ExternData(), config=self.config, name="root", absolute_name_prefix=(self.tf_name_scope + "/") if self.tf_name_scope else "")