Пример #1
0
    def _value_eval(self, game: ReversiGame, piece: str) -> Union[float, int]:
        """The evaluation function for minimax. For Positional Player, the evaluation function
        will evaluate the positional advantage of the pieces on the board.

        Preconditions:
            - piece in {BLACK, WHITE}

        :param game: the current game state for evaluation
        :return: value evaluated from the current game state
        """
        if game.get_winner() is not None:
            if game.get_winner() == piece:  # win
                return math.inf
            elif game.get_winner() == 'Draw':  # draw
                return 0
            else:  # lose
                return -math.inf
        else:
            num_black, num_white = game.get_num_pieces(
            )[BLACK], game.get_num_pieces()[WHITE]
            corner_black, corner_white = check_corners(game)
            board_filled = (num_black + num_white) / (game.get_size()**2)

            if piece == BLACK:
                if board_filled < 0.80:  # early to middle game
                    return 10 * (corner_black - corner_white) + len(
                        game.get_valid_moves())
                else:  # end game
                    return num_black / num_white
            else:
                if board_filled < 0.80:  # early to middle game
                    return 10 * (corner_white - corner_black) + len(
                        game.get_valid_moves())
                else:  # end game
                    return num_white / num_black
Пример #2
0
    def make_move(self, game: ReversiGame,
                  previous_move: Optional[str]) -> str:
        """Make a move given the current game.

        previous_move is the opponent player's most recent move, or None if no moves
        have been made.

        Preconditions:
            - There is at least one valid move for the given game state
            - len(game.get_valid_moves) > 0

        :param game: the current game state
        :param previous_move: the opponent player's most recent move, or None if no moves
        have been made
        :return: a move to be made
        """
        if len(game.get_valid_moves()) == 1:
            return game.get_valid_moves()[0]

        if previous_move is None:
            tree = MCTSTree(START_MOVE, copy.deepcopy(game))
        else:
            tree = MCTSTree(previous_move, copy.deepcopy(game))

        # assert self._tree.get_game_after_move().get_game_board() == game.get_game_board()
        # assert self._tree.get_game_after_move().get_current_player() == game.get_current_player()

        runs_so_far = 0  # the counter for the rounds of MCTS run
        time_start = time.time()

        # at least run 1 second, ends when exceeds time limit or finishes n runs
        while not (time.time() - time_start > max(self.time_limit, 1)
                   or runs_so_far == self.n):
            tree.mcts_round(self._c)
            runs_so_far += 1

        # update tree with the decided move
        move = tree.get_most_confident_move()
        return move
Пример #3
0
    def _minimax(self, root_move: tuple[int, int], depth: int,
                 game: ReversiGame, alpha: float, beta: float) -> GameTree:
        """
        _minimax is a minimax function with alpha-beta pruning implemented that returns
        a full GameTree where each node stores the given evaluation

        Preconditions
            - depth >= 0
        """
        white_move = (game.get_current_player() == -1)
        ret = GameTree(move=root_move, is_white_move=white_move)
        # early return at max depth
        if depth == self.depth:
            ret.evaluation = heuristic(game, self.heuristic_list)
            return ret
        possible_moves = list(game.get_valid_moves())
        if not possible_moves:
            if game.get_winner() == 'white':
                ret.evaluation = 10000
            elif game.get_winner() == 'black':
                ret.evaluation = -10000
            else:
                ret.evaluation = 0
            return ret
        random.shuffle(possible_moves)
        best_value = float('-inf')
        if not white_move:
            best_value = float('inf')
        for move in possible_moves:
            new_game = game.copy_and_make_move(move)
            new_tree = self._minimax(move, depth + 1, new_game, alpha, beta)
            ret.add_subtree(new_tree)
            # we update the alpha value when the maximizer is playing (white)
            if white_move and best_value < new_tree.evaluation:
                best_value = new_tree.evaluation
                alpha = max(alpha, best_value)
                if beta <= alpha:
                    break
            # we update the beta value when the minimizer is playing (black)
            elif not white_move and best_value > new_tree.evaluation:
                best_value = new_tree.evaluation
                beta = min(beta, best_value)
                if beta <= alpha:
                    break
        ret.evaluation = best_value
        return ret
Пример #4
0
 def _minimax(self, root_move: tuple[int, int], game: ReversiGame,
              depth: int) -> GameTree:
     """
     _minimax is a function that returns a tree where each node has a value determined by
     the minimax search algorithm
     """
     white_move = (game.get_current_player() == -1)
     ret = GameTree(move=root_move, is_white_move=white_move)
     # early return if we have reached max depth
     if depth == self.depth:
         ret.evaluation = heuristic(game, self.heuristic_list)
         return ret
     possible_moves = list(game.get_valid_moves())
     # game is over if there are no possible moves in a position
     if not possible_moves:
         # if there are no moves, then the game is over so we check for the winner
         if game.get_winner() == 'white':
             ret.evaluation = 10000
         elif game.get_winner() == 'black':
             ret.evaluation = -10000
         else:
             ret.evaluation = 0
         return ret
     # shuffle for randomness
     random.shuffle(possible_moves)
     # best_value tracks the best possible move that the player can make
     # this value is maximized by white and minimized by black
     best_value = float('-inf')
     if not white_move:
         best_value = float('inf')
     for move in possible_moves:
         new_game = game.copy_and_make_move(move)
         new_subtree = self._minimax(move, new_game, depth + 1)
         if white_move:
             best_value = max(best_value, new_subtree.evaluation)
         else:
             best_value = min(best_value, new_subtree.evaluation)
         ret.add_subtree(new_subtree)
     # update the evaluation value of the tree once all subtrees are added
     ret.evaluation = best_value
     return ret
Пример #5
0
    def build_minimax_tree(self,
                           game: ReversiGame,
                           piece: str,
                           depth: int,
                           find_max: bool,
                           previous_move: str,
                           alpha: float = -math.inf,
                           beta: float = math.inf) -> MinimaxTree:
        """Construct a tree with a height of depth, prune branches based on the Tree's
        evaluate function"""
        game_tree = MinimaxTree(move=previous_move,
                                maximize=find_max,
                                alpha=alpha,
                                beta=beta)

        if game.get_winner() is not None or depth == 0:
            game_tree.eval = self._value_eval(game, piece)
        else:
            valid_moves = game.get_valid_moves()
            random.shuffle(valid_moves)
            for move in valid_moves:

                game_after_move = game.simulate_move(move)
                subtree = self.build_minimax_tree(game_after_move,
                                                  piece,
                                                  depth - 1,
                                                  not find_max,
                                                  move,
                                                  alpha=game_tree.alpha,
                                                  beta=game_tree.beta)

                game_tree.add_subtree(subtree)

                if game_tree.beta <= game_tree.alpha:
                    break

        return game_tree
Пример #6
0
def _run_ai_game(game_surface: pygame.Surface, size: int,
                 ai_player: Union[MobilityTreePlayer, PositionalTreePlayer, RandomPlayer,
                                  ReversiGame, MCTSTimeSavingPlayer],
                 user_side: str = BLACK) -> None:
    if size == 8:
        background = pygame.image.load('assets/gameboard8.png')
    elif size == 6:
        background = pygame.image.load('assets/gameboard6.png')
    else:
        raise ValueError("invalid size.")
    game_surface.blit(background, (0, 0))
    pygame.display.flip()
    game = ReversiGame(size)
    previous_move = '*'
    if user_side == BLACK:
        ai_side: str = WHITE
    else:
        ai_side: str = BLACK
    board = game.get_game_board()
    _draw_game_state(game_surface, background, size, board)

    pass_move = pygame.image.load('assets/pass.png')

    while game.get_winner() is None:
        if (previous_move == '*' and user_side == WHITE) or game.get_current_player() == user_side:
            if game.get_valid_moves() == ['pass']:
                game.make_move('pass')
                previous_move = 'pass'

                surface = game_surface
                game_surface.blit(pass_move, (300, 300))
                pygame.display.flip()
                pygame.time.wait(1000)
                game_surface.blit(surface, (0, 0))
                pygame.display.flip()

                continue
            while True:
                event = pygame.event.wait()
                if event.type == pygame.MOUSEBUTTONDOWN:
                    mouse_pos = pygame.mouse.get_pos()
                    if 585 <= mouse_pos[0] <= 795 and 10 <= mouse_pos[1] <= 41:
                        return
                    else:
                        move = _search_for_move(mouse_pos, size)
                        print(move)
                        if move == '' or move not in game.get_valid_moves():
                            continue
                        else:
                            previous_move = move
                            game.make_move(move)
                            board = game.get_game_board()
                            _draw_game_state(game_surface, background, size, board)
                            pygame.time.wait(1000)
                            break
                if event.type == pygame.QUIT:
                    return
        else:
            move = ai_player.make_move(game, previous_move)
            previous_move = move
            game.make_move(move)
            if move == 'pass':
                surface = game_surface
                game_surface.blit(pass_move, (300, 300))
                pygame.display.flip()
                pygame.time.wait(1000)
                game_surface.blit(surface, (0, 0))
                pygame.display.flip()
            else:
                board = game.get_game_board()
                _draw_game_state(game_surface, background, size, board)
    winner = game.get_winner()
    if winner == user_side:
        victory = pygame.image.load('assets/victory.png')
        game_surface.blit(victory, (300, 300))
        pygame.display.flip()
        pygame.time.wait(3000)
        return
    elif winner == ai_side:
        defeat = pygame.image.load('assets/defeat.png')
        game_surface.blit(defeat, (300, 300))
        pygame.display.flip()
        pygame.time.wait(3000)
        return
    else:
        draw = pygame.image.load('assets/draw.png')
        game_surface.blit(draw, (300, 300))
        pygame.display.flip()
        pygame.time.wait(3000)
        return
Пример #7
0
 def make_move(self, game: ReversiGame,
               previous_move: tuple[int, int]) -> tuple[int, int]:
     """Make a random move."""
     return random.choice(list(game.get_valid_moves()))