Пример #1
0
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    GI = retina.gauss_norm_img(x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               imsize=imgsize,
                               rgb=False)
    # Sample using the other recepetive field, note there is no temporal response with still images
    S = retina.sample(img, x, y, dcoeff[i], dloc[i], rgb=True)
    #backproject the imagevectors
    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    ninverse = retina.inverse(ncentreV,
                              x,
                              y,
                              dcoeff[i],
                              dloc[i],
                              GI,
                              imsize=imgsize,
                              rgb=True)
    ninv_crop = retina.crop(ninverse, x, y, dloc[i])
    ninverse2 = retina.inverse(nsurrV,
                               x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               GI,
                               imsize=imgsize,
                               rgb=True)
    ninv_crop2 = retina.crop(ninverse2, x, y, dloc[i])
    # place descriptive text onto generated images
    cv2.putText(ninv_crop, "R+G + ", (xx, yy), font, 1, (255, 255, 255), 2)
    cv2.putText(ninv_crop2, "R+G - ", (xx, yy), font, 1, (255, 255, 255), 2)
    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    # create cortical maps of the imagevectors
    lposnon, rposnon = cortex.cort_img(ncentreV, L, L_loc, R, R_loc, cort_size,
                                       G)
    lnegnon, rnegnon = cortex.cort_img(nsurrV, L, L_loc, R, R_loc, cort_size,
                                       G)
    pos_cort_img = np.concatenate((np.rot90(lposnon), np.rot90(rposnon, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lnegnon), np.rot90(rnegnon, k=3)),
                                  axis=1)
    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)
    return merged, mergecort
Пример #2
0
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    # Sample using accelerated retina function
    S = ret1.sample(lateimg)  # SURROUND
    S = retina_cuda.convert_to_Piotr(S)
    #showretina:
    #return the modified,rectified imagevectors
    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    # generate packprojected images
    ninverse = ret0.inverse(
        retina_cuda.convert_from_Piotr(ncentreV.astype(float)))
    ninv_crop = retina.crop(ninverse, int(img.shape[1] / 2),
                            int(img.shape[0] / 2), loc[0])

    ninverse2 = ret1.inverse(
        retina_cuda.convert_from_Piotr(nsurrV.astype(float)))
    ninv_crop2 = retina.crop(ninverse2, int(img.shape[1] / 2),
                             int(img.shape[0] / 2), dloc[0])
    # place descriptive text onto generated images
    cv2.putText(ninv_crop, "R+G + ", (1, 270), font, 1, (0, 255, 255), 2)
    cv2.putText(ninv_crop2, "R+G - ", (1, 270), font, 1, (0, 255, 255), 2)

    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    #showcortex
    ## create cortical maps of the imagevectors using accelerated functions
    lposnon = cort0.cort_image_left(
        retina_cuda.convert_from_Piotr(ncentreV.astype(float)))
    rposnon = cort0.cort_image_right(
        retina_cuda.convert_from_Piotr(ncentreV.astype(float)))
    lnegnon = cort1.cort_image_left(
        retina_cuda.convert_from_Piotr(nsurrV.astype(float)))
    rnegnon = cort1.cort_image_right(
        retina_cuda.convert_from_Piotr(nsurrV.astype(float)))
    pos_cort_img_non = np.concatenate(
        (np.rot90(lposnon), np.rot90(rposnon, k=3)), axis=1)
    neg_cort_img_non = np.concatenate(
        (np.rot90(lnegnon), np.rot90(rnegnon, k=3)), axis=1)
    # merge left and right hemispheres
    mergedcortex = np.concatenate((pos_cort_img_non, neg_cort_img_non), axis=1)
    return merged, mergedcortex
Пример #3
0
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    # Sample using the other recepetive field, but with a temporally different image, lateimg
    S = retina.sample(lateimg, x, y, dcoeff[i], dloc[i], rgb=True)

    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    ninverse = retina.inverse(ncentreV,
                              x,
                              y,
                              dcoeff[i],
                              dloc[i],
                              GI,
                              imsize=imgsize,
                              rgb=False)
    ninv_crop = retina.crop(ninverse, x, y, dloc[i])
    ninverse2 = retina.inverse(nsurrV,
                               x,
                               y,
                               dcoeff[i],
                               dloc[i],
                               GI,
                               imsize=imgsize,
                               rgb=False)
    ninv_crop2 = retina.crop(ninverse2, x, y, dloc[i])
    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    lposnon, rposnon = cortex.cort_img(ncentreV, L, L_loc, R, R_loc, cort_size,
                                       G)
    lnegnon, rnegnon = cortex.cort_img(nsurrV, L, L_loc, R, R_loc, cort_size,
                                       G)
    pos_cort_img = np.concatenate((np.rot90(lposnon), np.rot90(rposnon, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lnegnon), np.rot90(rnegnon, k=3)),
                                  axis=1)
    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)

    return merged, mergecort