def test_recognized(self): """Verify valid input leads to a recognition.""" query_id = str(uuid.uuid4()) text = "set the bedroom light to red" self.hermes.publish = MagicMock() self.hermes.handle_query( NluQuery(input=text, id=query_id, siteId=self.siteId, sessionId=self.sessionId)) self.hermes.publish.assert_called_with( NluIntent( input=text, id=query_id, intent=Intent(intentName="SetLightColor", confidenceScore=1), slots=[ Slot( entity="name", slotName="name", value="bedroom", raw_value="bedroom", confidence=1, range=SlotRange(8, 15), ), Slot( entity="color", slotName="color", value="red", raw_value="red", confidence=1, range=SlotRange(25, 28), ), ], siteId=self.siteId, sessionId=self.sessionId, ), intent_name="SetLightColor", )
async def handle_text_captured( self, text_captured: AsrTextCaptured ) -> typing.AsyncIterable[typing.Union[AsrStopListening, HotwordToggleOn, NluQuery]]: """Handle ASR text captured for session.""" try: if self.session is None: return _LOGGER.debug("Received text: %s", text_captured.text) # Record result self.session.text_captured = text_captured # Stop listening yield AsrStopListening(site_id=text_captured.site_id, session_id=self.session.session_id) # Enable hotword yield HotwordToggleOn( site_id=text_captured.site_id, reason=HotwordToggleReason.DIALOGUE_SESSION, ) # Perform query yield NluQuery( input=text_captured.text, intent_filter=self.session.intent_filter or self.default_intent_filter, session_id=self.session.session_id, site_id=self.session.site_id, wakeword_id=text_captured.wakeword_id or self.session.wakeword_id, lang=text_captured.lang or self.session.lang, ) except Exception: _LOGGER.exception("handle_text_captured")
async def handle_text_captured( self, text_captured: AsrTextCaptured ) -> typing.AsyncIterable[ typing.Union[ AsrStopListening, HotwordToggleOn, NluQuery, NluIntentNotRecognized ] ]: """Handle ASR text captured for session.""" try: if not text_captured.session_id: _LOGGER.warning("Missing session id on text captured message.") return site_session = self.all_sessions.get(text_captured.session_id) if site_session is None: _LOGGER.warning( "No session for id %s. Dropping captured text from ASR.", text_captured.session_id, ) return _LOGGER.debug("Received text: %s", text_captured.text) # Record result site_session.text_captured = text_captured # Stop listening yield AsrStopListening( site_id=text_captured.site_id, session_id=site_session.session_id ) # Enable hotword yield HotwordToggleOn( site_id=text_captured.site_id, reason=HotwordToggleReason.DIALOGUE_SESSION, ) if (self.min_asr_confidence is not None) and ( text_captured.likelihood < self.min_asr_confidence ): # Transcription is below thresold. # Don't actually do an NLU query, just reject as "not recognized". _LOGGER.debug( "Transcription is below confidence threshold (%s < %s): %s", text_captured.likelihood, self.min_asr_confidence, text_captured.text, ) yield NluIntentNotRecognized( input=text_captured.text, site_id=site_session.site_id, session_id=site_session.session_id, ) else: # Perform query custom_entities: typing.Optional[typing.Dict[str, typing.Any]] = None # Copy custom entities from hotword detected if site_session.detected: custom_entities = site_session.detected.custom_entities yield NluQuery( input=text_captured.text, intent_filter=site_session.intent_filter or self.default_intent_filter, session_id=site_session.session_id, site_id=site_session.site_id, wakeword_id=text_captured.wakeword_id or site_session.wakeword_id, lang=text_captured.lang or site_session.lang, custom_data=site_session.custom_data, asr_confidence=text_captured.likelihood, custom_entities=custom_entities, ) except Exception: _LOGGER.exception("handle_text_captured")
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[ NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" original_input = query.input try: if not self.intent_graph and self.graph_path and self.graph_path.is_file( ): # Load graph from file _LOGGER.debug("Loading %s", self.graph_path) with open(self.graph_path, mode="rb") as graph_file: self.intent_graph = rhasspynlu.gzip_pickle_to_graph( graph_file) if self.intent_graph: def intent_filter(intent_name: str) -> bool: """Filter out intents.""" if query.intent_filter: return intent_name in query.intent_filter return True # Replace digits with words if self.replace_numbers: # Have to assume whitespace tokenization words = rhasspynlu.replace_numbers(query.input.split(), self.language) query.input = " ".join(words) input_text = query.input # Fix casing for output event if self.word_transform: input_text = self.word_transform(input_text) if self.failure_token and (self.failure_token in query.input.split()): # Failure token was found in input recognitions = [] else: # Pass in raw query input so raw values will be correct recognitions = recognize( query.input, self.intent_graph, intent_filter=intent_filter, word_transform=self.word_transform, fuzzy=self.fuzzy, extra_converters=self.extra_converters, ) else: _LOGGER.error("No intent graph loaded") recognitions = [] if NluHermesMqtt.is_success(recognitions): # Use first recognition only. recognition = recognitions[0] assert recognition is not None assert recognition.intent is not None intent = Intent( intent_name=recognition.intent.name, confidence_score=recognition.intent.confidence, ) slots = [ Slot( entity=(e.source or e.entity), slot_name=e.entity, confidence=1.0, value=e.value_dict, raw_value=e.raw_value, range=SlotRange( start=e.start, end=e.end, raw_start=e.raw_start, raw_end=e.raw_end, ), ) for e in recognition.entities ] if query.custom_entities: # Copy user-defined entities for entity_name, entity_value in query.custom_entities.items( ): slots.append( Slot( entity=entity_name, confidence=1.0, value={"value": entity_value}, )) # intentParsed yield NluIntentParsed( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, ) # intent yield ( NluIntent( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, asr_tokens=[ NluIntent.make_asr_tokens(recognition.tokens) ], asr_confidence=query.asr_confidence, raw_input=original_input, wakeword_id=query.wakeword_id, lang=(query.lang or self.lang), custom_data=query.custom_data, ), { "intent_name": recognition.intent.name }, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, custom_data=query.custom_data, ) except Exception as e: _LOGGER.exception("handle_query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=original_input, )
async def async_test_handle_query(self): """Verify valid input leads to a query message.""" query_id = str(uuid.uuid4()) text = "set the bedroom light to red" query = NluQuery(input=text, id=query_id, site_id=self.site_id, session_id=self.session_id) results = [] async for result in self.hermes.on_message(query): results.append(result) # Check results intent = Intent(intent_name="SetLightColor", confidence_score=1.0) slots = [ Slot( entity="name", slot_name="name", value={ "kind": "Unknown", "value": "bedroom" }, raw_value="bedroom", confidence=1.0, range=SlotRange(start=8, end=15, raw_start=8, raw_end=15), ), Slot( entity="color", slot_name="color", value={ "kind": "Unknown", "value": "red" }, raw_value="red", confidence=1.0, range=SlotRange(start=25, end=28, raw_start=25, raw_end=28), ), ] self.assertEqual( results, [ NluIntentParsed( input=text, id=query_id, site_id=self.site_id, session_id=self.session_id, intent=intent, slots=slots, ), ( NluIntent( input=text, id=query_id, site_id=self.site_id, session_id=self.session_id, intent=intent, slots=slots, asr_tokens=[NluIntent.make_asr_tokens(text.split())], raw_input=text, ), { "intent_name": intent.intent_name }, ), ], )
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[ NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" # Check intent graph try: if (not self.intent_graph and self.intent_graph_path and self.intent_graph_path.is_file()): _LOGGER.debug("Loading %s", self.intent_graph_path) with open(self.intent_graph_path, mode="rb") as graph_file: self.intent_graph = rhasspynlu.gzip_pickle_to_graph( graph_file) # Check examples if (self.intent_graph and self.examples_path and self.examples_path.is_file()): def intent_filter(intent_name: str) -> bool: """Filter out intents.""" if query.intent_filter: return intent_name in query.intent_filter return True original_text = query.input # Replace digits with words if self.replace_numbers: # Have to assume whitespace tokenization words = rhasspynlu.replace_numbers(query.input.split(), self.language) query.input = " ".join(words) input_text = query.input # Fix casing if self.word_transform: input_text = self.word_transform(input_text) recognitions: typing.List[rhasspynlu.intent.Recognition] = [] if input_text: recognitions = rhasspyfuzzywuzzy.recognize( input_text, self.intent_graph, str(self.examples_path), intent_filter=intent_filter, extra_converters=self.extra_converters, ) else: _LOGGER.error("No intent graph or examples loaded") recognitions = [] # Use first recognition only if above threshold if (recognitions and recognitions[0] and recognitions[0].intent and (recognitions[0].intent.confidence >= self.confidence_threshold)): recognition = recognitions[0] assert recognition.intent intent = Intent( intent_name=recognition.intent.name, confidence_score=recognition.intent.confidence, ) slots = [ Slot( entity=(e.source or e.entity), slot_name=e.entity, confidence=1.0, value=e.value_dict, raw_value=e.raw_value, range=SlotRange( start=e.start, end=e.end, raw_start=e.raw_start, raw_end=e.raw_end, ), ) for e in recognition.entities ] if query.custom_entities: # Copy user-defined entities for entity_name, entity_value in query.custom_entities.items( ): slots.append( Slot( entity=entity_name, confidence=1.0, value={"value": entity_value}, )) # intentParsed yield NluIntentParsed( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, ) # intent yield ( NluIntent( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, asr_tokens=[ NluIntent.make_asr_tokens(recognition.tokens) ], asr_confidence=query.asr_confidence, raw_input=original_text, wakeword_id=query.wakeword_id, lang=(query.lang or self.lang), custom_data=query.custom_data, ), { "intent_name": recognition.intent.name }, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, custom_data=query.custom_data, ) except Exception as e: _LOGGER.exception("handle_query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=original_text, )
def test_nlu_query(): """Test NluQuery.""" assert NluQuery.topic() == "hermes/nlu/query"
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[ NluIntentParsed, NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" try: # Replace digits with words if self.replace_numbers: # Have to assume whitespace tokenization words = rhasspynlu.replace_numbers(query.input.split(), self.number_language) query.input = " ".join(words) input_text = query.input # Fix casing for output event if self.word_transform: input_text = self.word_transform(input_text) parse_url = urljoin(self.rasa_url, "model/parse") _LOGGER.debug(parse_url) async with self.http_session.post( parse_url, json={ "text": input_text, "project": self.rasa_project }, ssl=self.ssl_context, ) as response: response.raise_for_status() intent_json = await response.json() intent = intent_json.get("intent", {}) intent_name = intent.get("name", "") if intent_name and (query.intent_filter is None or intent_name in query.intent_filter): confidence_score = float(intent.get("confidence", 0.0)) slots = [ Slot( entity=e.get("entity", ""), slot_name=e.get("entity", ""), confidence=float(e.get("confidence", 0.0)), value={ "kind": "Unknown", "value": e.get("value", ""), "additional_info": e.get("additional_info", {}), "extractor": e.get("extractor", None), }, raw_value=e.get("value", ""), range=SlotRange( start=int(e.get("start", 0)), end=int(e.get("end", 1)), raw_start=int(e.get("start", 0)), raw_end=int(e.get("end", 1)), ), ) for e in intent_json.get("entities", []) ] # intentParsed yield NluIntentParsed( input=input_text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent(intent_name=intent_name, confidence_score=confidence_score), slots=slots, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, ) except Exception as e: _LOGGER.exception("nlu query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=query.input, )
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[ NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" try: original_input = query.input # Replace digits with words if self.replace_numbers: # Have to assume whitespace tokenization words = rhasspynlu.replace_numbers(query.input.split(), self.number_language) query.input = " ".join(words) input_text = query.input # Fix casing for output event if self.word_transform: input_text = self.word_transform(input_text) parse_url = urljoin(self.rasa_url, "model/parse") _LOGGER.debug(parse_url) async with self.http_session.post( parse_url, json={ "text": input_text, "project": self.rasa_project }, ssl=self.ssl_context, ) as response: response.raise_for_status() intent_json = await response.json() intent = intent_json.get("intent", {}) intent_name = intent.get("name", "") if intent_name and (query.intent_filter is None or intent_name in query.intent_filter): confidence_score = float(intent.get("confidence", 0.0)) slots = [ Slot( entity=e.get("entity", ""), slot_name=e.get("entity", ""), confidence=float(e.get("confidence", 0.0)), value={ "kind": "Unknown", "value": e.get("value", "") }, raw_value=e.get("value", ""), range=SlotRange( start=int(e.get("start", 0)), end=int(e.get("end", 1)), raw_start=int(e.get("start", 0)), raw_end=int(e.get("end", 1)), ), ) for e in intent_json.get("entities", []) ] if query.custom_entities: # Copy user-defined entities for entity_name, entity_value in query.custom_entities.items( ): slots.append( Slot( entity=entity_name, confidence=1.0, value={"value": entity_value}, )) # intentParsed yield NluIntentParsed( input=input_text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent(intent_name=intent_name, confidence_score=confidence_score), slots=slots, ) # intent yield ( NluIntent( input=input_text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent( intent_name=intent_name, confidence_score=confidence_score, ), slots=slots, asr_tokens=[ NluIntent.make_asr_tokens(input_text.split()) ], asr_confidence=query.asr_confidence, raw_input=original_input, lang=(query.lang or self.lang), custom_data=query.custom_data, ), { "intent_name": intent_name }, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, custom_data=query.custom_data, ) except Exception as e: _LOGGER.exception("nlu query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=query.input, )