Пример #1
0
    def test_recognized(self):
        """Verify valid input leads to a recognition."""
        query_id = str(uuid.uuid4())
        text = "set the bedroom light to red"

        self.hermes.publish = MagicMock()
        self.hermes.handle_query(
            NluQuery(input=text,
                     id=query_id,
                     siteId=self.siteId,
                     sessionId=self.sessionId))

        self.hermes.publish.assert_called_with(
            NluIntent(
                input=text,
                id=query_id,
                intent=Intent(intentName="SetLightColor", confidenceScore=1),
                slots=[
                    Slot(
                        entity="name",
                        slotName="name",
                        value="bedroom",
                        raw_value="bedroom",
                        confidence=1,
                        range=SlotRange(8, 15),
                    ),
                    Slot(
                        entity="color",
                        slotName="color",
                        value="red",
                        raw_value="red",
                        confidence=1,
                        range=SlotRange(25, 28),
                    ),
                ],
                siteId=self.siteId,
                sessionId=self.sessionId,
            ),
            intent_name="SetLightColor",
        )
Пример #2
0
    async def handle_text_captured(
        self, text_captured: AsrTextCaptured
    ) -> typing.AsyncIterable[typing.Union[AsrStopListening, HotwordToggleOn,
                                           NluQuery]]:
        """Handle ASR text captured for session."""
        try:
            if self.session is None:
                return

            _LOGGER.debug("Received text: %s", text_captured.text)

            # Record result
            self.session.text_captured = text_captured

            # Stop listening
            yield AsrStopListening(site_id=text_captured.site_id,
                                   session_id=self.session.session_id)

            # Enable hotword
            yield HotwordToggleOn(
                site_id=text_captured.site_id,
                reason=HotwordToggleReason.DIALOGUE_SESSION,
            )

            # Perform query
            yield NluQuery(
                input=text_captured.text,
                intent_filter=self.session.intent_filter
                or self.default_intent_filter,
                session_id=self.session.session_id,
                site_id=self.session.site_id,
                wakeword_id=text_captured.wakeword_id
                or self.session.wakeword_id,
                lang=text_captured.lang or self.session.lang,
            )
        except Exception:
            _LOGGER.exception("handle_text_captured")
Пример #3
0
    async def handle_text_captured(
        self, text_captured: AsrTextCaptured
    ) -> typing.AsyncIterable[
        typing.Union[
            AsrStopListening, HotwordToggleOn, NluQuery, NluIntentNotRecognized
        ]
    ]:
        """Handle ASR text captured for session."""
        try:
            if not text_captured.session_id:
                _LOGGER.warning("Missing session id on text captured message.")
                return

            site_session = self.all_sessions.get(text_captured.session_id)
            if site_session is None:
                _LOGGER.warning(
                    "No session for id %s. Dropping captured text from ASR.",
                    text_captured.session_id,
                )
                return

            _LOGGER.debug("Received text: %s", text_captured.text)

            # Record result
            site_session.text_captured = text_captured

            # Stop listening
            yield AsrStopListening(
                site_id=text_captured.site_id, session_id=site_session.session_id
            )

            # Enable hotword
            yield HotwordToggleOn(
                site_id=text_captured.site_id,
                reason=HotwordToggleReason.DIALOGUE_SESSION,
            )

            if (self.min_asr_confidence is not None) and (
                text_captured.likelihood < self.min_asr_confidence
            ):
                # Transcription is below thresold.
                # Don't actually do an NLU query, just reject as "not recognized".
                _LOGGER.debug(
                    "Transcription is below confidence threshold (%s < %s): %s",
                    text_captured.likelihood,
                    self.min_asr_confidence,
                    text_captured.text,
                )

                yield NluIntentNotRecognized(
                    input=text_captured.text,
                    site_id=site_session.site_id,
                    session_id=site_session.session_id,
                )
            else:
                # Perform query
                custom_entities: typing.Optional[typing.Dict[str, typing.Any]] = None

                # Copy custom entities from hotword detected
                if site_session.detected:
                    custom_entities = site_session.detected.custom_entities

                yield NluQuery(
                    input=text_captured.text,
                    intent_filter=site_session.intent_filter
                    or self.default_intent_filter,
                    session_id=site_session.session_id,
                    site_id=site_session.site_id,
                    wakeword_id=text_captured.wakeword_id or site_session.wakeword_id,
                    lang=text_captured.lang or site_session.lang,
                    custom_data=site_session.custom_data,
                    asr_confidence=text_captured.likelihood,
                    custom_entities=custom_entities,
                )
        except Exception:
            _LOGGER.exception("handle_text_captured")
Пример #4
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[
            NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        original_input = query.input

        try:
            if not self.intent_graph and self.graph_path and self.graph_path.is_file(
            ):
                # Load graph from file
                _LOGGER.debug("Loading %s", self.graph_path)
                with open(self.graph_path, mode="rb") as graph_file:
                    self.intent_graph = rhasspynlu.gzip_pickle_to_graph(
                        graph_file)

            if self.intent_graph:

                def intent_filter(intent_name: str) -> bool:
                    """Filter out intents."""
                    if query.intent_filter:
                        return intent_name in query.intent_filter
                    return True

                # Replace digits with words
                if self.replace_numbers:
                    # Have to assume whitespace tokenization
                    words = rhasspynlu.replace_numbers(query.input.split(),
                                                       self.language)
                    query.input = " ".join(words)

                input_text = query.input

                # Fix casing for output event
                if self.word_transform:
                    input_text = self.word_transform(input_text)

                if self.failure_token and (self.failure_token
                                           in query.input.split()):
                    # Failure token was found in input
                    recognitions = []
                else:
                    # Pass in raw query input so raw values will be correct
                    recognitions = recognize(
                        query.input,
                        self.intent_graph,
                        intent_filter=intent_filter,
                        word_transform=self.word_transform,
                        fuzzy=self.fuzzy,
                        extra_converters=self.extra_converters,
                    )
            else:
                _LOGGER.error("No intent graph loaded")
                recognitions = []

            if NluHermesMqtt.is_success(recognitions):
                # Use first recognition only.
                recognition = recognitions[0]
                assert recognition is not None
                assert recognition.intent is not None

                intent = Intent(
                    intent_name=recognition.intent.name,
                    confidence_score=recognition.intent.confidence,
                )
                slots = [
                    Slot(
                        entity=(e.source or e.entity),
                        slot_name=e.entity,
                        confidence=1.0,
                        value=e.value_dict,
                        raw_value=e.raw_value,
                        range=SlotRange(
                            start=e.start,
                            end=e.end,
                            raw_start=e.raw_start,
                            raw_end=e.raw_end,
                        ),
                    ) for e in recognition.entities
                ]

                if query.custom_entities:
                    # Copy user-defined entities
                    for entity_name, entity_value in query.custom_entities.items(
                    ):
                        slots.append(
                            Slot(
                                entity=entity_name,
                                confidence=1.0,
                                value={"value": entity_value},
                            ))

                # intentParsed
                yield NluIntentParsed(
                    input=recognition.text,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    intent=intent,
                    slots=slots,
                )

                # intent
                yield (
                    NluIntent(
                        input=recognition.text,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=intent,
                        slots=slots,
                        asr_tokens=[
                            NluIntent.make_asr_tokens(recognition.tokens)
                        ],
                        asr_confidence=query.asr_confidence,
                        raw_input=original_input,
                        wakeword_id=query.wakeword_id,
                        lang=(query.lang or self.lang),
                        custom_data=query.custom_data,
                    ),
                    {
                        "intent_name": recognition.intent.name
                    },
                )
            else:
                # Not recognized
                yield NluIntentNotRecognized(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    custom_data=query.custom_data,
                )
        except Exception as e:
            _LOGGER.exception("handle_query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=original_input,
            )
    async def async_test_handle_query(self):
        """Verify valid input leads to a query message."""
        query_id = str(uuid.uuid4())
        text = "set the bedroom light to red"

        query = NluQuery(input=text,
                         id=query_id,
                         site_id=self.site_id,
                         session_id=self.session_id)

        results = []
        async for result in self.hermes.on_message(query):
            results.append(result)

        # Check results
        intent = Intent(intent_name="SetLightColor", confidence_score=1.0)
        slots = [
            Slot(
                entity="name",
                slot_name="name",
                value={
                    "kind": "Unknown",
                    "value": "bedroom"
                },
                raw_value="bedroom",
                confidence=1.0,
                range=SlotRange(start=8, end=15, raw_start=8, raw_end=15),
            ),
            Slot(
                entity="color",
                slot_name="color",
                value={
                    "kind": "Unknown",
                    "value": "red"
                },
                raw_value="red",
                confidence=1.0,
                range=SlotRange(start=25, end=28, raw_start=25, raw_end=28),
            ),
        ]

        self.assertEqual(
            results,
            [
                NluIntentParsed(
                    input=text,
                    id=query_id,
                    site_id=self.site_id,
                    session_id=self.session_id,
                    intent=intent,
                    slots=slots,
                ),
                (
                    NluIntent(
                        input=text,
                        id=query_id,
                        site_id=self.site_id,
                        session_id=self.session_id,
                        intent=intent,
                        slots=slots,
                        asr_tokens=[NluIntent.make_asr_tokens(text.split())],
                        raw_input=text,
                    ),
                    {
                        "intent_name": intent.intent_name
                    },
                ),
            ],
        )
Пример #6
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[
            NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        # Check intent graph
        try:
            if (not self.intent_graph and self.intent_graph_path
                    and self.intent_graph_path.is_file()):
                _LOGGER.debug("Loading %s", self.intent_graph_path)
                with open(self.intent_graph_path, mode="rb") as graph_file:
                    self.intent_graph = rhasspynlu.gzip_pickle_to_graph(
                        graph_file)

            # Check examples
            if (self.intent_graph and self.examples_path
                    and self.examples_path.is_file()):

                def intent_filter(intent_name: str) -> bool:
                    """Filter out intents."""
                    if query.intent_filter:
                        return intent_name in query.intent_filter
                    return True

                original_text = query.input

                # Replace digits with words
                if self.replace_numbers:
                    # Have to assume whitespace tokenization
                    words = rhasspynlu.replace_numbers(query.input.split(),
                                                       self.language)
                    query.input = " ".join(words)

                input_text = query.input

                # Fix casing
                if self.word_transform:
                    input_text = self.word_transform(input_text)

                recognitions: typing.List[rhasspynlu.intent.Recognition] = []

                if input_text:
                    recognitions = rhasspyfuzzywuzzy.recognize(
                        input_text,
                        self.intent_graph,
                        str(self.examples_path),
                        intent_filter=intent_filter,
                        extra_converters=self.extra_converters,
                    )
            else:
                _LOGGER.error("No intent graph or examples loaded")
                recognitions = []

            # Use first recognition only if above threshold
            if (recognitions and recognitions[0] and recognitions[0].intent
                    and (recognitions[0].intent.confidence >=
                         self.confidence_threshold)):
                recognition = recognitions[0]
                assert recognition.intent
                intent = Intent(
                    intent_name=recognition.intent.name,
                    confidence_score=recognition.intent.confidence,
                )
                slots = [
                    Slot(
                        entity=(e.source or e.entity),
                        slot_name=e.entity,
                        confidence=1.0,
                        value=e.value_dict,
                        raw_value=e.raw_value,
                        range=SlotRange(
                            start=e.start,
                            end=e.end,
                            raw_start=e.raw_start,
                            raw_end=e.raw_end,
                        ),
                    ) for e in recognition.entities
                ]

                if query.custom_entities:
                    # Copy user-defined entities
                    for entity_name, entity_value in query.custom_entities.items(
                    ):
                        slots.append(
                            Slot(
                                entity=entity_name,
                                confidence=1.0,
                                value={"value": entity_value},
                            ))

                # intentParsed
                yield NluIntentParsed(
                    input=recognition.text,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    intent=intent,
                    slots=slots,
                )

                # intent
                yield (
                    NluIntent(
                        input=recognition.text,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=intent,
                        slots=slots,
                        asr_tokens=[
                            NluIntent.make_asr_tokens(recognition.tokens)
                        ],
                        asr_confidence=query.asr_confidence,
                        raw_input=original_text,
                        wakeword_id=query.wakeword_id,
                        lang=(query.lang or self.lang),
                        custom_data=query.custom_data,
                    ),
                    {
                        "intent_name": recognition.intent.name
                    },
                )
            else:
                # Not recognized
                yield NluIntentNotRecognized(
                    input=query.input,
                    id=query.id,
                    site_id=query.site_id,
                    session_id=query.session_id,
                    custom_data=query.custom_data,
                )
        except Exception as e:
            _LOGGER.exception("handle_query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=original_text,
            )
Пример #7
0
def test_nlu_query():
    """Test NluQuery."""
    assert NluQuery.topic() == "hermes/nlu/query"
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[
            NluIntentParsed, NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        try:
            # Replace digits with words
            if self.replace_numbers:
                # Have to assume whitespace tokenization
                words = rhasspynlu.replace_numbers(query.input.split(),
                                                   self.number_language)
                query.input = " ".join(words)

            input_text = query.input

            # Fix casing for output event
            if self.word_transform:
                input_text = self.word_transform(input_text)

            parse_url = urljoin(self.rasa_url, "model/parse")
            _LOGGER.debug(parse_url)

            async with self.http_session.post(
                    parse_url,
                    json={
                        "text": input_text,
                        "project": self.rasa_project
                    },
                    ssl=self.ssl_context,
            ) as response:
                response.raise_for_status()
                intent_json = await response.json()
                intent = intent_json.get("intent", {})
                intent_name = intent.get("name", "")

                if intent_name and (query.intent_filter is None
                                    or intent_name in query.intent_filter):
                    confidence_score = float(intent.get("confidence", 0.0))
                    slots = [
                        Slot(
                            entity=e.get("entity", ""),
                            slot_name=e.get("entity", ""),
                            confidence=float(e.get("confidence", 0.0)),
                            value={
                                "kind": "Unknown",
                                "value": e.get("value", ""),
                                "additional_info":
                                e.get("additional_info", {}),
                                "extractor": e.get("extractor", None),
                            },
                            raw_value=e.get("value", ""),
                            range=SlotRange(
                                start=int(e.get("start", 0)),
                                end=int(e.get("end", 1)),
                                raw_start=int(e.get("start", 0)),
                                raw_end=int(e.get("end", 1)),
                            ),
                        ) for e in intent_json.get("entities", [])
                    ]

                    # intentParsed
                    yield NluIntentParsed(
                        input=input_text,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=Intent(intent_name=intent_name,
                                      confidence_score=confidence_score),
                        slots=slots,
                    )
                else:
                    # Not recognized
                    yield NluIntentNotRecognized(
                        input=query.input,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                    )
        except Exception as e:
            _LOGGER.exception("nlu query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=query.input,
            )
Пример #9
0
    async def handle_query(
        self, query: NluQuery
    ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[
            NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]:
        """Do intent recognition."""
        try:
            original_input = query.input

            # Replace digits with words
            if self.replace_numbers:
                # Have to assume whitespace tokenization
                words = rhasspynlu.replace_numbers(query.input.split(),
                                                   self.number_language)
                query.input = " ".join(words)

            input_text = query.input

            # Fix casing for output event
            if self.word_transform:
                input_text = self.word_transform(input_text)

            parse_url = urljoin(self.rasa_url, "model/parse")
            _LOGGER.debug(parse_url)

            async with self.http_session.post(
                    parse_url,
                    json={
                        "text": input_text,
                        "project": self.rasa_project
                    },
                    ssl=self.ssl_context,
            ) as response:
                response.raise_for_status()
                intent_json = await response.json()
                intent = intent_json.get("intent", {})
                intent_name = intent.get("name", "")

                if intent_name and (query.intent_filter is None
                                    or intent_name in query.intent_filter):
                    confidence_score = float(intent.get("confidence", 0.0))
                    slots = [
                        Slot(
                            entity=e.get("entity", ""),
                            slot_name=e.get("entity", ""),
                            confidence=float(e.get("confidence", 0.0)),
                            value={
                                "kind": "Unknown",
                                "value": e.get("value", "")
                            },
                            raw_value=e.get("value", ""),
                            range=SlotRange(
                                start=int(e.get("start", 0)),
                                end=int(e.get("end", 1)),
                                raw_start=int(e.get("start", 0)),
                                raw_end=int(e.get("end", 1)),
                            ),
                        ) for e in intent_json.get("entities", [])
                    ]

                    if query.custom_entities:
                        # Copy user-defined entities
                        for entity_name, entity_value in query.custom_entities.items(
                        ):
                            slots.append(
                                Slot(
                                    entity=entity_name,
                                    confidence=1.0,
                                    value={"value": entity_value},
                                ))

                    # intentParsed
                    yield NluIntentParsed(
                        input=input_text,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        intent=Intent(intent_name=intent_name,
                                      confidence_score=confidence_score),
                        slots=slots,
                    )

                    # intent
                    yield (
                        NluIntent(
                            input=input_text,
                            id=query.id,
                            site_id=query.site_id,
                            session_id=query.session_id,
                            intent=Intent(
                                intent_name=intent_name,
                                confidence_score=confidence_score,
                            ),
                            slots=slots,
                            asr_tokens=[
                                NluIntent.make_asr_tokens(input_text.split())
                            ],
                            asr_confidence=query.asr_confidence,
                            raw_input=original_input,
                            lang=(query.lang or self.lang),
                            custom_data=query.custom_data,
                        ),
                        {
                            "intent_name": intent_name
                        },
                    )
                else:
                    # Not recognized
                    yield NluIntentNotRecognized(
                        input=query.input,
                        id=query.id,
                        site_id=query.site_id,
                        session_id=query.session_id,
                        custom_data=query.custom_data,
                    )
        except Exception as e:
            _LOGGER.exception("nlu query")
            yield NluError(
                site_id=query.site_id,
                session_id=query.session_id,
                error=str(e),
                context=query.input,
            )