def transform(self,X): if self.tsupdate: Cr = riemann.mean_covariance(X,metric=self.metric) else: Cr = self.Cr return riemann.tangent_space(X,Cr)
def transform(self, X): if self.tsupdate: Cr = riemann.mean_covariance(X, metric=self.metric) else: Cr = self.Cr return riemann.tangent_space(X, Cr)
def fit(self,X,y=None): C1 = riemann.mean_covariance(X[y==1,...],self.metric) C0 = riemann.mean_covariance(X[y==0,...],self.metric) Ne,_ = C0.shape self.subelec = range(0,Ne,1) while (len(self.subelec)-2*self.nfilters)>self.nelec: di = numpy.zeros((len(self.subelec),1)) for idx in range(2*self.nfilters,len(self.subelec)): sub = self.subelec[:] sub.pop(idx) di[idx] = riemann.distance(C0[:,sub][sub,:],C1[:,sub][sub,:]) #print di torm = di.argmax() self.dist.append(di.max()) self.subelec.pop(torm)
def fit(self,X,y=None): C1 = riemann.mean_covariance(X[y==1,...],self.metric) C0 = riemann.mean_covariance(X[y==0,...],self.metric) Ne,_ = C0.shape self.subelec = list(range(0,Ne,1)) while (len(self.subelec)-2*self.nfilters)>self.nelec: di = numpy.zeros((len(self.subelec),1)) for idx in range(2*self.nfilters,len(self.subelec)): sub = self.subelec[:] sub.pop(idx) di[idx] = riemann.distance(C0[:,sub][sub,:],C1[:,sub][sub,:]) #print di torm = di.argmax() self.dist.append(di.max()) self.subelec.pop(torm)
def fit_transform(self,X,y=None): # compute mean covariance self.Cr = riemann.mean_covariance(X,metric=self.metric) return riemann.tangent_space(X,self.Cr)
def fit(self,X,y=None): # compute mean covariance self.Cr = riemann.mean_covariance(X,metric=self.metric)
def fit_transform(self, X, y=None): # compute mean covariance self.Cr = riemann.mean_covariance(X, metric=self.metric) return riemann.tangent_space(X, self.Cr)
def fit(self, X, y=None): # compute mean covariance self.Cr = riemann.mean_covariance(X, metric=self.metric)