def assign_xyzp_keys(nets): """Return a dictionary mapping a net to a unique key indicating the XYZP co-ordinate of the source of the net. """ # Create the XYZP-formatted bit field xyzp_bf = BitField() xyzp_bf.add_field("x", length=8, start_at=24) xyzp_bf.add_field("y", length=8, start_at=16) xyzp_bf.add_field("z", length=8, start_at=8) xyzp_bf.add_field("p", length=5, start_at=3) xyzp_bf.assign_fields() # Fix the bitfield sizing # Prepare to store the nets and keys net_keys = dict() # For each net look at the placement of the source vertex and hence # generate a key. for net in nets: # Get the originating co-ordinates x, y, p = net.source # Get the minimal xyz co-ordinate x, y, z = minimise_xyz(to_xyz((x, y))) # Generate the key and mask bf = xyzp_bf(x=x, y=y, z=abs(z), p=p) net_keys[net] = bf.get_value(), bf.get_mask() return net_keys
def make_routing_tables(): # Create a perfect SpiNNaker machine to build against machine = Machine(12, 12) # Assign a vertex to each of the 17 application cores on each chip vertices = OrderedDict( ((x, y, p), object()) for x, y in machine for p in range(1, 18) ) # Generate the vertex resources, placements and allocations (required for # routing) vertices_resources = OrderedDict( (vertex, {Cores: 1}) for vertex in itervalues(vertices) ) placements = OrderedDict( (vertex, (x, y)) for (x, y, p), vertex in iteritems(vertices) ) allocations = OrderedDict( (vertex, {Cores: slice(p, p+1)}) for (x, y, p), vertex in iteritems(vertices) ) # Compute the distance dependent probabilities - this is a geometric # distribution such that each core has a 50% chance of being connected to # each core on the same chip, 25% on chips one hop away, 12.5% on chips two # hops away, etc. p = 0.5 probs = {d: p*(1 - p)**d for d in range(max(machine.width, machine.height))} p = 0.3 dprobs = {d: p*(1 - p)**d for d in range(max(machine.width, machine.height))} # Compute offsets to get to centroids vector_centroids = list() for d in (5, 6, 7): for i in range(d + 1): for j in range(d + 1 - i): vector_centroids.append((i, j, d - i - j)) # Make the nets, each vertex is connected with distance dependent # probability to other vertices. random.seed(123) nets = OrderedDict() for source_coord, source in iteritems(vertices): # Convert source_coord to xyz form source_coord_xyz = minimise_xyz(to_xyz(source_coord[:-1])) # Add a number of centroids x, y, z = source_coord_xyz possible_centroids = [minimise_xyz((x + i, y + j, z + k)) for i, j, k in vector_centroids] n_centroids = random.choice(17*(0, ) + (1, 1) + (2, )) centroids = random.sample(possible_centroids, n_centroids) # Construct the sinks list sinks = list() for sink_coord, sink in iteritems(vertices): # Convert sink_coord to xyz form sink_coord = minimise_xyz(to_xyz(sink_coord[:-1])) # Get the path length to the original source dist = shortest_torus_path_length(source_coord_xyz, sink_coord, machine.width, machine.height) if random.random() < probs[dist]: sinks.append(sink) continue # See if the sink is connected to the centre of any of the # centroids. for coord in centroids: dist = shortest_torus_path_length( coord, sink_coord, machine.width, machine.height ) if random.random() < dprobs[dist]: sinks.append(sink) break # Add the net nets[source_coord] = Net(source, sinks) rig_nets = list(itervalues(nets)) # Just the nets # Determine how many bits to use in the keys xyp_fields = BitField(32) xyp_fields.add_field("x", length=8, start_at=24) xyp_fields.add_field("y", length=8, start_at=16) xyp_fields.add_field("p", length=5, start_at=11) xyzp_fields = BitField(32) xyzp_fields.add_field("x", length=8, start_at=24) xyzp_fields.add_field("y", length=8, start_at=16) xyzp_fields.add_field("z", length=8, start_at=8) xyzp_fields.add_field("p", length=5, start_at=3) hilbert_fields = BitField(32) hilbert_fields.add_field("index", length=16, start_at=16) hilbert_fields.add_field("p", length=5, start_at=11) random.seed(321) rnd_fields = BitField(32) rnd_fields.add_field("rnd", length=12, start_at=20) rnd_seen = set() # Generate the routing keys net_keys_xyp = OrderedDict() net_keys_xyzp = OrderedDict() net_keys_hilbert = OrderedDict() net_keys_rnd = OrderedDict() for i, (x, y) in enumerate(chip for chip in hilbert_chip_order(machine) if chip in machine): # Add the key for each net from each processor for p in range(1, 18): # Get the net net = nets[(x, y, p)] # Construct the xyp key/mask net_keys_xyp[net] = xyp_fields(x=x, y=y, p=p) # Construct the xyzp mask x_, y_, z_ = minimise_xyz(to_xyz((x, y))) net_keys_xyzp[net] = xyzp_fields(x=x_, y=y_, z=abs(z_), p=p) # Construct the Hilbert key/mask net_keys_hilbert[net] = hilbert_fields(index=i, p=p) # Construct the random 12 bit value field val = None while val is None or val in rnd_seen: val = random.getrandbits(12) rnd_seen.add(val) net_keys_rnd[net] = rnd_fields(rnd=val) # Route the network and then generate the routing tables constraints = list() print("Routing...") routing_tree = route(vertices_resources, rig_nets, machine, constraints, placements, allocations) # Write the routing tables to file for fields, desc in ((net_keys_xyp, "xyp"), (net_keys_xyzp, "xyzp"), (net_keys_hilbert, "hilbert"), (net_keys_rnd, "rnd")): print("Getting keys and masks...") keys = OrderedDict( (net, (bf.get_value(), bf.get_mask())) for net, bf in iteritems(fields) ) print("Constructing routing tables for {}...".format(desc)) tables = routing_tree_to_tables(routing_tree, keys) print([len(x) for x in itervalues(tables)]) print("Writing to file...") fn = "uncompressed/centroid_{}_{}_{}.bin".format( machine.width, machine.height, desc) with open(fn, "wb+") as f: dump_routing_tables(f, tables)
def make_routing_tables(): # Create a perfect SpiNNaker machine to build against machine = Machine(12, 12) # Assign a vertex to each of the 17 application cores on each chip vertices = OrderedDict( ((x, y, p), object()) for x, y in machine for p in range(1, 18)) # Generate the vertex resources, placements and allocations (required for # routing) vertices_resources = OrderedDict((vertex, { Cores: 1 }) for vertex in itervalues(vertices)) placements = OrderedDict( (vertex, (x, y)) for (x, y, p), vertex in iteritems(vertices)) allocations = OrderedDict((vertex, { Cores: slice(p, p + 1) }) for (x, y, p), vertex in iteritems(vertices)) # Compute the distance dependent probabilities - this is a geometric # distribution such that each core has a 50% chance of being connected to # each core on the same chip, 25% on chips one hop away, 12.5% on chips two # hops away, etc. p = 0.5 probs = { d: p * (1 - p)**d for d in range(max(machine.width, machine.height)) } p = 0.3 dprobs = { d: p * (1 - p)**d for d in range(max(machine.width, machine.height)) } # Compute offsets to get to centroids vector_centroids = list() for d in (5, 6, 7): for i in range(d + 1): for j in range(d + 1 - i): vector_centroids.append((i, j, d - i - j)) # Make the nets, each vertex is connected with distance dependent # probability to other vertices. random.seed(123) nets = OrderedDict() for source_coord, source in iteritems(vertices): # Convert source_coord to xyz form source_coord_xyz = minimise_xyz(to_xyz(source_coord[:-1])) # Add a number of centroids x, y, z = source_coord_xyz possible_centroids = [ minimise_xyz((x + i, y + j, z + k)) for i, j, k in vector_centroids ] n_centroids = random.choice(17 * (0, ) + (1, 1) + (2, )) centroids = random.sample(possible_centroids, n_centroids) # Construct the sinks list sinks = list() for sink_coord, sink in iteritems(vertices): # Convert sink_coord to xyz form sink_coord = minimise_xyz(to_xyz(sink_coord[:-1])) # Get the path length to the original source dist = shortest_torus_path_length(source_coord_xyz, sink_coord, machine.width, machine.height) if random.random() < probs[dist]: sinks.append(sink) continue # See if the sink is connected to the centre of any of the # centroids. for coord in centroids: dist = shortest_torus_path_length(coord, sink_coord, machine.width, machine.height) if random.random() < dprobs[dist]: sinks.append(sink) break # Add the net nets[source_coord] = Net(source, sinks) rig_nets = list(itervalues(nets)) # Just the nets # Determine how many bits to use in the keys xyp_fields = BitField(32) xyp_fields.add_field("x", length=8, start_at=24) xyp_fields.add_field("y", length=8, start_at=16) xyp_fields.add_field("p", length=5, start_at=11) xyzp_fields = BitField(32) xyzp_fields.add_field("x", length=8, start_at=24) xyzp_fields.add_field("y", length=8, start_at=16) xyzp_fields.add_field("z", length=8, start_at=8) xyzp_fields.add_field("p", length=5, start_at=3) hilbert_fields = BitField(32) hilbert_fields.add_field("index", length=16, start_at=16) hilbert_fields.add_field("p", length=5, start_at=11) random.seed(321) rnd_fields = BitField(32) rnd_fields.add_field("rnd", length=12, start_at=20) rnd_seen = set() # Generate the routing keys net_keys_xyp = OrderedDict() net_keys_xyzp = OrderedDict() net_keys_hilbert = OrderedDict() net_keys_rnd = OrderedDict() for i, (x, y) in enumerate(chip for chip in hilbert_chip_order(machine) if chip in machine): # Add the key for each net from each processor for p in range(1, 18): # Get the net net = nets[(x, y, p)] # Construct the xyp key/mask net_keys_xyp[net] = xyp_fields(x=x, y=y, p=p) # Construct the xyzp mask x_, y_, z_ = minimise_xyz(to_xyz((x, y))) net_keys_xyzp[net] = xyzp_fields(x=x_, y=y_, z=abs(z_), p=p) # Construct the Hilbert key/mask net_keys_hilbert[net] = hilbert_fields(index=i, p=p) # Construct the random 12 bit value field val = None while val is None or val in rnd_seen: val = random.getrandbits(12) rnd_seen.add(val) net_keys_rnd[net] = rnd_fields(rnd=val) # Route the network and then generate the routing tables constraints = list() print("Routing...") routing_tree = route(vertices_resources, rig_nets, machine, constraints, placements, allocations) # Write the routing tables to file for fields, desc in ((net_keys_xyp, "xyp"), (net_keys_xyzp, "xyzp"), (net_keys_hilbert, "hilbert"), (net_keys_rnd, "rnd")): print("Getting keys and masks...") keys = OrderedDict((net, (bf.get_value(), bf.get_mask())) for net, bf in iteritems(fields)) print("Constructing routing tables for {}...".format(desc)) tables = routing_tree_to_tables(routing_tree, keys) print([len(x) for x in itervalues(tables)]) print("Writing to file...") fn = "uncompressed/centroid_{}_{}_{}.bin".format( machine.width, machine.height, desc) with open(fn, "wb+") as f: dump_routing_tables(f, tables)
def make_routing_tables(): # Create a perfect SpiNNaker machine to build against machine = Machine(12, 12) # Assign a vertex to each of the 17 application cores on each chip vertices = OrderedDict( ((x, y, p), object()) for x, y in machine for p in range(1, 18) ) # Generate the vertex resources, placements and allocations (required for # routing) vertices_resources = OrderedDict( (vertex, {Cores: 1}) for vertex in itervalues(vertices) ) placements = OrderedDict( (vertex, (x, y)) for (x, y, p), vertex in iteritems(vertices) ) allocations = OrderedDict( (vertex, {Cores: slice(p, p+1)}) for (x, y, p), vertex in iteritems(vertices) ) # Compute the distance dependent probabilities probs = {d: .5*math.exp(-.65*d) for d in range(max(machine.width, machine.height))} # Make the nets, each vertex is connected with distance dependent # probability to other vertices. random.seed(123) nets = OrderedDict() for source_coord, source in iteritems(vertices): # Convert source_coord to xyz form source_coord_xyz = minimise_xyz(to_xyz(source_coord[:-1])) # Construct the sinks list sinks = list() for sink_coord, sink in iteritems(vertices): # Convert sink_coord to xyz form sink_coord = minimise_xyz(to_xyz(sink_coord[:-1])) # Get the path length dist = shortest_torus_path_length(source_coord_xyz, sink_coord, machine.width, machine.height) if random.random() < probs[dist]: sinks.append(sink) # Add the net nets[source_coord] = Net(source, sinks) rig_nets = list(itervalues(nets)) # Just the nets # Determine how many bits to use in the keys xyp_fields = BitField(32) xyp_fields.add_field("x", length=8, start_at=24) xyp_fields.add_field("y", length=8, start_at=16) xyp_fields.add_field("p", length=5, start_at=11) xyzp_fields = BitField(32) xyzp_fields.add_field("x", length=8, start_at=24) xyzp_fields.add_field("y", length=8, start_at=16) xyzp_fields.add_field("z", length=8, start_at=8) xyzp_fields.add_field("p", length=5, start_at=3) hilbert_fields = BitField(32) hilbert_fields.add_field("index", length=16, start_at=16) hilbert_fields.add_field("p", length=5, start_at=11) random.seed(321) rnd_fields = BitField(32) rnd_fields.add_field("rnd", length=12, start_at=20) rnd_seen = set() # Generate the routing keys net_keys_xyp = OrderedDict() net_keys_xyzp = OrderedDict() net_keys_hilbert = OrderedDict() net_keys_rnd = OrderedDict() for i, (x, y) in enumerate(chip for chip in hilbert_chip_order(machine) if chip in machine): # Add the key for each net from each processor for p in range(1, 18): # Get the net net = nets[(x, y, p)] # Construct the xyp key/mask net_keys_xyp[net] = xyp_fields(x=x, y=y, p=p) # Construct the xyzp mask x_, y_, z_ = minimise_xyz(to_xyz((x, y))) net_keys_xyzp[net] = xyzp_fields(x=x_, y=y_, z=abs(z_), p=p) # Construct the Hilbert key/mask net_keys_hilbert[net] = hilbert_fields(index=i, p=p) # Construct the random 12 bit value field val = None while val is None or val in rnd_seen: val = random.getrandbits(12) rnd_seen.add(val) net_keys_rnd[net] = rnd_fields(rnd=val) # Route the network and then generate the routing tables constraints = list() print("Routing...") routing_tree = route(vertices_resources, rig_nets, machine, constraints, placements, allocations) # Write the routing tables to file for fields, desc in ((net_keys_xyp, "xyp"), (net_keys_xyzp, "xyzp"), (net_keys_hilbert, "hilbert"), (net_keys_rnd, "rnd")): print("Getting keys and masks...") keys = {net: (bf.get_value(), bf.get_mask()) for net, bf in iteritems(fields)} print("Constructing routing tables for {}...".format(desc)) tables = routing_tree_to_tables(routing_tree, keys) print([len(x) for x in itervalues(tables)]) print("Writing to file...") fn = "uncompressed/gaussian_{}_{}_{}.bin".format( machine.width, machine.height, desc) with open(fn, "wb+") as f: dump_routing_tables(f, tables)
from matplotlib import pyplot as plt import numpy as np import random from rig.geometry import to_xyz, minimise_xyz, shortest_torus_path_length import seaborn as sns random.seed(2801) sns.set(context="paper", style="whitegrid", font="Times New Roman") fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(3.5, 1)) # Compute the probability for the Gaussian model g_prob = np.zeros((12, 12)) home = minimise_xyz(to_xyz((1, 6))) for x in range(12): for y in range(12): target = minimise_xyz(to_xyz((x, y))) d = shortest_torus_path_length(home, target, 12, 12) g_prob[y, x] = d g_prob = .5 * np.exp(-.65 * g_prob) ax0.set_title("Locally-connected") ax0.grid(False) ax0.set_xticklabels([]) ax0.set_yticklabels([]) ax0.matshow(g_prob, vmin=0.0, vmax=1.0, origin='lower')
def get_network(machine, rng): # Compute the distance between chips dists = np.zeros((machine.width, machine.height, 17), dtype=np.uint32) for x, y in machine: dists[x, y, :] = shortest_torus_path_length( (0, 0, 0), minimise_xyz(to_xyz([x, y])), machine.width, machine.height ) # Compute the probability of a target for each distance probs = 0.475**(dists + 1) centroid_probs = 0.25**(dists + 1) # Create the vertices for each core (and allocations and placements) vertices = OrderedDict() placements = OrderedDict() allocations = OrderedDict() resources = defaultdict(lambda: {Cores: 1}) for x, y in machine: for p in range(17): # Create the new vertex for this core vx = common.Vertex(x, y, p) # Place and allocate vertices[x, y, p] = vx placements[vx] = (x, y) allocations[vx] = {Cores: slice(p, p+1)} # Keep track of targets which are the result of centroid(s) centroid_sinks = defaultdict(lambda: set()) # Now construct the nets nets = list() for x, y, p in ((i, j, k) for k in range(17) for i, j in machine): # Get the source source = vertices[x, y, p] # Get the (local) sinks sinks = get_targets(x, y, probs, machine.width, machine.height, rng, vertices) # Add centroid links if we have any (we have a 5% chance of connecting # to 1 centroid) if rng.uniform(0, 1) < 0.05: # Get the target co-ordinates c_sinks = get_targets(x, y, centroid_probs, machine.width, machine.height, rng, vertices) # Mark these as sinks relating to a centroid centroid_sinks[x, y, p].update(c_sinks) # Add to the general list of sinks sinks += c_sinks # Add the net nets.append(Net(source, sinks)) # Route the nets logger.info("Routing...") # Get the centroid routes centroid_routes = route(resources, nets, machine, list(), placements, allocations) # Prune back to get the local-only connections logger.info("Pruning...") local_routes = { net: common.get_pruned_routing_tree(tree, centroid_sinks[net.source]) for net, tree in iteritems(centroid_routes) } return centroid_routes, local_routes
from matplotlib import pyplot as plt import numpy as np import random from rig.geometry import to_xyz, minimise_xyz, shortest_torus_path_length import seaborn as sns random.seed(2801) sns.set(context="paper", style="whitegrid", font="Times New Roman") fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(3.5, 1)) # Compute the probability for the Gaussian model g_prob = np.zeros((12, 12)) home = minimise_xyz(to_xyz((1, 6))) for x in range(12): for y in range(12): target = minimise_xyz(to_xyz((x, y))) d = shortest_torus_path_length(home, target, 12, 12) g_prob[y, x] = d g_prob = .5 * np.exp(-.65*g_prob) ax0.set_title("Locally-connected") ax0.grid(False) ax0.set_xticklabels([]) ax0.set_yticklabels([]) ax0.matshow(g_prob, vmin=0.0, vmax=1.0, origin='lower')
def get_network(machine, rng): # Compute the distance between chips dists = np.zeros((machine.width, machine.height, 17), dtype=np.uint32) for x, y in machine: dists[x, y, :] = shortest_torus_path_length((0, 0, 0), minimise_xyz(to_xyz([x, y])), machine.width, machine.height) # Compute the probability of a target for each distance probs = 0.475**(dists + 1) centroid_probs = 0.25**(dists + 1) # Create the vertices for each core (and allocations and placements) vertices = OrderedDict() placements = OrderedDict() allocations = OrderedDict() resources = defaultdict(lambda: {Cores: 1}) for x, y in machine: for p in range(17): # Create the new vertex for this core vx = common.Vertex(x, y, p) # Place and allocate vertices[x, y, p] = vx placements[vx] = (x, y) allocations[vx] = {Cores: slice(p, p + 1)} # Keep track of targets which are the result of centroid(s) centroid_sinks = defaultdict(lambda: set()) # Now construct the nets nets = list() for x, y, p in ((i, j, k) for k in range(17) for i, j in machine): # Get the source source = vertices[x, y, p] # Get the (local) sinks sinks = get_targets(x, y, probs, machine.width, machine.height, rng, vertices) # Add centroid links if we have any (we have a 5% chance of connecting # to 1 centroid) if rng.uniform(0, 1) < 0.05: # Get the target co-ordinates c_sinks = get_targets(x, y, centroid_probs, machine.width, machine.height, rng, vertices) # Mark these as sinks relating to a centroid centroid_sinks[x, y, p].update(c_sinks) # Add to the general list of sinks sinks += c_sinks # Add the net nets.append(Net(source, sinks)) # Route the nets logger.info("Routing...") # Get the centroid routes centroid_routes = route(resources, nets, machine, list(), placements, allocations) # Prune back to get the local-only connections logger.info("Pruning...") local_routes = { net: common.get_pruned_routing_tree(tree, centroid_sinks[net.source]) for net, tree in iteritems(centroid_routes) } return centroid_routes, local_routes