def tile(sceneid, tile_x, tile_y, tile_z, rgb=(4, 3, 2), tilesize=256, pan=False): """Create mercator tile from Landsat-8 data. Attributes ---------- sceneid : str Landsat sceneid. For scenes after May 2017, sceneid have to be LANDSAT_PRODUCT_ID. tile_x : int Mercator tile X index. tile_y : int Mercator tile Y index. tile_z : int Mercator tile ZOOM level. rgb : tuple, int, optional (default: (4, 3, 2)) Bands index for the RGB combination. tilesize : int, optional (default: 256) Output image size. pan : boolean, optional (default: False) If True, apply pan-sharpening. Returns ------- data : numpy ndarray mask: numpy array """ if not isinstance(rgb, tuple): rgb = tuple((rgb, )) scene_params = utils.landsat_parse_scene_id(sceneid) meta_data = utils.landsat_get_mtl(sceneid).get('L1_METADATA_FILE') landsat_address = '{}/{}'.format(LANDSAT_BUCKET, scene_params['key']) wgs_bounds = toa_utils._get_bounds_from_metadata( meta_data['PRODUCT_METADATA']) if not utils.tile_exists(wgs_bounds, tile_z, tile_x, tile_y): raise TileOutsideBounds( 'Tile {}/{}/{} is outside image bounds'.format( tile_z, tile_x, tile_y)) mercator_tile = mercantile.Tile(x=tile_x, y=tile_y, z=tile_z) tile_bounds = mercantile.xy_bounds(mercator_tile) ms_tile_size = int(tilesize / 2) if pan else tilesize addresses = ['{}_B{}.TIF'.format(landsat_address, band) for band in rgb] _tiler = partial(utils.tile_band_worker, bounds=tile_bounds, tilesize=ms_tile_size, nodata=0) with futures.ThreadPoolExecutor(max_workers=3) as executor: data, masks = zip(*list(executor.map(_tiler, addresses))) data = np.concatenate(data) mask = np.all(masks, axis=0).astype(np.uint8) * 255 if pan: pan_address = '{}_B8.TIF'.format(landsat_address) matrix_pan, mask = utils.tile_band_worker(pan_address, tile_bounds, tilesize, nodata=0) w, s, e, n = tile_bounds pan_transform = transform.from_bounds(w, s, e, n, tilesize, tilesize) vis_transform = pan_transform * Affine.scale(2.) data = pansharpen(data, vis_transform, matrix_pan, pan_transform, np.int16, 'EPSG:3857', 'EPSG:3857', 0.2, method='Brovey', src_nodata=0) sun_elev = meta_data['IMAGE_ATTRIBUTES']['SUN_ELEVATION'] for bdx, band in enumerate(rgb): if int(band) > 9: # TIRS multi_rad = meta_data['RADIOMETRIC_RESCALING'].get( 'RADIANCE_MULT_BAND_{}'.format(band)) add_rad = meta_data['RADIOMETRIC_RESCALING'].get( 'RADIANCE_ADD_BAND_{}'.format(band)) k1 = meta_data['TIRS_THERMAL_CONSTANTS'].get( 'K1_CONSTANT_BAND_{}'.format(band)) k2 = meta_data['TIRS_THERMAL_CONSTANTS'].get( 'K2_CONSTANT_BAND_{}'.format(band)) data[bdx] = brightness_temp.brightness_temp( data[bdx], multi_rad, add_rad, k1, k2) else: multi_reflect = meta_data['RADIOMETRIC_RESCALING'].get( 'REFLECTANCE_MULT_BAND_{}'.format(band)) add_reflect = meta_data['RADIOMETRIC_RESCALING'].get( 'REFLECTANCE_ADD_BAND_{}'.format(band)) data[bdx] = 10000 * reflectance.reflectance( data[bdx], multi_reflect, add_reflect, sun_elev) return data, mask
def tile(sceneid, tile_x, tile_y, tile_z, rgb=(4, 3, 2), r_bds=(0, 16000), g_bds=(0, 16000), b_bds=(0, 16000), tilesize=256, pan=False): """Create mercator tile from Landsat-8 data and encodes it in base64. Attributes ---------- sceneid : str Landsat sceneid. For scenes after May 2017, sceneid have to be LANDSAT_PRODUCT_ID. tile_x : int Mercator tile X index. tile_y : int Mercator tile Y index. tile_z : int Mercator tile ZOOM level. rgb : tuple, int, optional (default: (4, 3, 2)) Bands index for the RGB combination. r_bds : tuple, int, optional (default: (0, 16000)) First band (red) DN min and max values (DN * 10,000) used for the linear rescaling. g_bds : tuple, int, optional (default: (0, 16000)) Second band (green) DN min and max values (DN * 10,000) used for the linear rescaling. b_bds : tuple, int, optional (default: (0, 16000)) Third band (blue) DN min and max values (DN * 10,000) used for the linear rescaling. tilesize : int, optional (default: 256) Output image size. pan : boolean, optional (default: False) If True, apply pan-sharpening. Returns ------- out : numpy ndarray (type: uint8) """ scene_params = utils.landsat_parse_scene_id(sceneid) meta_data = utils.landsat_get_mtl(sceneid).get('L1_METADATA_FILE') landsat_address = '{}/{}'.format(LANDSAT_BUCKET, scene_params['key']) wgs_bounds = toa_utils._get_bounds_from_metadata( meta_data['PRODUCT_METADATA']) if not utils.tile_exists(wgs_bounds, tile_z, tile_x, tile_y): raise TileOutsideBounds('Tile {}/{}/{} is outside image bounds'.format( tile_z, tile_x, tile_y)) mercator_tile = mercantile.Tile(x=tile_x, y=tile_y, z=tile_z) tile_bounds = mercantile.xy_bounds(mercator_tile) # define a list of bands Min and Max Values (from input) histo_cuts = dict(zip(rgb, [r_bds, g_bds, b_bds])) ms_tile_size = int(tilesize / 2) if pan else tilesize addresses = ['{}_B{}.TIF'.format(landsat_address, band) for band in rgb] _tiler = partial(utils.tile_band_worker, bounds=tile_bounds, tilesize=ms_tile_size) with futures.ThreadPoolExecutor(max_workers=3) as executor: out = np.stack(list(executor.map(_tiler, addresses))) if pan: pan_address = '{}_B8.TIF'.format(landsat_address) matrix_pan = utils.tile_band_worker(pan_address, tile_bounds, tilesize) w, s, e, n = tile_bounds pan_transform = transform.from_bounds(w, s, e, n, tilesize, tilesize) vis_transform = pan_transform * Affine.scale(2.) out = pansharpen(out, vis_transform, matrix_pan, pan_transform, np.int16, 'EPSG:3857', 'EPSG:3857', 0.2, method='Brovey', src_nodata=0) sun_elev = meta_data['IMAGE_ATTRIBUTES']['SUN_ELEVATION'] for bdx, band in enumerate(rgb): multi_reflect = meta_data['RADIOMETRIC_RESCALING'].get( 'REFLECTANCE_MULT_BAND_{}'.format(band)) add_reflect = meta_data['RADIOMETRIC_RESCALING'].get( 'REFLECTANCE_ADD_BAND_{}'.format(band)) out[bdx] = 10000 * reflectance.reflectance( out[bdx], multi_reflect, add_reflect, sun_elev, src_nodata=0) out[bdx] = np.where( out[bdx] > 0, utils.linear_rescale(out[bdx], in_range=histo_cuts.get(band), out_range=[1, 255]), 0) return out.astype(np.uint8)
def tile(sceneid, tile_x, tile_y, tile_z, bands=("4", "3", "2"), tilesize=256, pan=False): """ Create mercator tile from Landsat-8 data. Attributes ---------- sceneid : str Landsat sceneid. For scenes after May 2017, sceneid have to be LANDSAT_PRODUCT_ID. tile_x : int Mercator tile X index. tile_y : int Mercator tile Y index. tile_z : int Mercator tile ZOOM level. bands : tuple, str, optional (default: ("4", "3", "2")) Bands index for the RGB combination. tilesize : int, optional (default: 256) Output image size. pan : boolean, optional (default: False) If True, apply pan-sharpening. Returns ------- data : numpy ndarray mask: numpy array """ if not isinstance(bands, tuple): bands = tuple((bands, )) for band in bands: if band not in LANDSAT_BANDS: raise InvalidBandName( "{} is not a valid Landsat band name".format(band)) scene_params = _landsat_parse_scene_id(sceneid) meta_data = _landsat_get_mtl(sceneid).get("L1_METADATA_FILE") landsat_address = "{}/{}".format(LANDSAT_BUCKET, scene_params["key"]) wgs_bounds = toa_utils._get_bounds_from_metadata( meta_data["PRODUCT_METADATA"]) if not utils.tile_exists(wgs_bounds, tile_z, tile_x, tile_y): raise TileOutsideBounds("Tile {}/{}/{} is outside image bounds".format( tile_z, tile_x, tile_y)) mercator_tile = mercantile.Tile(x=tile_x, y=tile_y, z=tile_z) tile_bounds = mercantile.xy_bounds(mercator_tile) ms_tile_size = int(tilesize / 2) if pan else tilesize addresses = ["{}_B{}.TIF".format(landsat_address, band) for band in bands] _tiler = partial(utils.tile_read, bounds=tile_bounds, tilesize=ms_tile_size, nodata=0) with futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor: data, masks = zip(*list(executor.map(_tiler, addresses))) data = np.concatenate(data) mask = np.all(masks, axis=0).astype(np.uint8) * 255 if pan: pan_address = "{}_B8.TIF".format(landsat_address) matrix_pan, mask = utils.tile_read(pan_address, tile_bounds, tilesize, nodata=0) w, s, e, n = tile_bounds pan_transform = transform.from_bounds(w, s, e, n, tilesize, tilesize) vis_transform = pan_transform * Affine.scale(2.0) data = pansharpen( data, vis_transform, matrix_pan, pan_transform, np.int16, "EPSG:3857", "EPSG:3857", 0.2, method="Brovey", src_nodata=0, ) sun_elev = meta_data["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"] for bdx, band in enumerate(bands): if int(band) > 9: # TIRS multi_rad = meta_data["RADIOMETRIC_RESCALING"].get( "RADIANCE_MULT_BAND_{}".format(band)) add_rad = meta_data["RADIOMETRIC_RESCALING"].get( "RADIANCE_ADD_BAND_{}".format(band)) k1 = meta_data["TIRS_THERMAL_CONSTANTS"].get( "K1_CONSTANT_BAND_{}".format(band)) k2 = meta_data["TIRS_THERMAL_CONSTANTS"].get( "K2_CONSTANT_BAND_{}".format(band)) data[bdx] = brightness_temp.brightness_temp( data[bdx], multi_rad, add_rad, k1, k2) else: multi_reflect = meta_data["RADIOMETRIC_RESCALING"].get( "REFLECTANCE_MULT_BAND_{}".format(band)) add_reflect = meta_data["RADIOMETRIC_RESCALING"].get( "REFLECTANCE_ADD_BAND_{}".format(band)) data[bdx] = 10000 * reflectance.reflectance( data[bdx], multi_reflect, add_reflect, sun_elev) return data, mask