Пример #1
0
def evaluate(environment_config, agent_config, options):
    """
        Evaluate an agent interacting with an environment.

    :param environment_config: the path of the environment configuration file
    :param agent_config: the path of the agent configuration file
    :param options: the evaluation options
    """
    logger.configure(LOGGING_CONFIG)
    if options['--verbose']:
        logger.configure(VERBOSE_CONFIG)
    env = load_environment(environment_config)
    agent = load_agent(agent_config, env)
    run_directory = Path(agent_config).with_suffix(
        '').name if options['--name-from-config'] else None
    options['--seed'] = int(
        options['--seed']) if options['--seed'] is not None else None
    evaluation = Evaluation(env,
                            agent,
                            run_directory=run_directory,
                            num_episodes=int(options['--episodes']),
                            sim_seed=options['--seed'],
                            recover=options['--recover']
                            or options['--recover-from'],
                            display_env=not options['--no-display'],
                            display_agent=not options['--no-display'],
                            display_rewards=not options['--no-display'])
    if options['--train']:
        evaluation.train()
    elif options['--test']:
        evaluation.test()
    else:
        evaluation.close()
    return os.path.relpath(evaluation.monitor.directory)
Пример #2
0
def evaluate(environment_config, agent_config, options):
    """
        Evaluate an agent interacting with an environment.

    :param environment_config: the path of the environment configuration file
    :param agent_config: the path of the agent configuration file
    :param options: the evaluation options
    """
    gym.logger.set_level(
        gym.logger.DEBUG if options['--verbose'] else gym.logger.INFO)
    env = load_environment(environment_config)
    agent = load_agent(agent_config, env)
    run_directory = Path(agent_config).with_suffix(
        '').name if options['--name-from-config'] else None
    options['--seed'] = int(
        options['--seed']) if options['--seed'] is not None else None
    evaluation = Evaluation(env,
                            agent,
                            run_directory=run_directory,
                            num_episodes=int(options['--episodes']),
                            sim_seed=options['--seed'],
                            recover=options['--recover'],
                            display_env=not options['--no-display'],
                            display_agent=not options['--no-display'],
                            display_rewards=not options['--no-display'])
    if options['--train']:
        evaluation.train()
    elif options['--test']:
        evaluation.test()
    else:
        evaluation.close()
    if options['--analyze'] and not options['<benchmark>']:
        RunAnalyzer([evaluation.monitor.directory])
    return os.path.relpath(evaluation.monitor.directory)
Пример #3
0
def evaluate(agent_config):
    environment_config = 'configs/FiniteMDPEnv/haystack/env3.json'
    gym.logger.set_level(gym.logger.INFO)
    env = load_environment(environment_config)
    agent = agent_factory(env, agent_config)
    evaluation = Evaluation(env,
                            agent,
                            directory=None,
                            num_episodes=1,
                            display_env=False,
                            display_agent=False,
                            display_rewards=False)
    evaluation.test()
    evaluation.close()
    return evaluation.monitor.stats_recorder.episode_rewards[0]
Пример #4
0
def evaluate(experiment):
    # Prepare workspace
    seed, budget, agent_config, env_config, path = experiment
    gym.logger.set_level(gym.logger.DISABLED)
    path = Path(path)
    path.parent.mkdir(parents=True, exist_ok=True)

    # Make environment
    env = load_environment(env_config)

    # Make agent
    agent_name, agent_config = agent_config
    agent_config["budget"] = int(budget)
    agent = agent_factory(env, agent_config)

    # Evaluate
    print("Evaluating agent {} with budget {} on seed {}".format(
        agent_name, budget, seed))
    evaluation = Evaluation(env,
                            agent,
                            directory=Path("out") / "planners" / agent_name,
                            num_episodes=1,
                            sim_seed=seed,
                            display_env=False,
                            display_agent=False,
                            display_rewards=False)
    evaluation.test()
    rewards = evaluation.monitor.stats_recorder.episode_rewards_[0]
    length = evaluation.monitor.stats_recorder.episode_lengths[0]
    total_reward = np.sum(rewards)
    return_ = np.sum([gamma**t * rewards[t] for t in range(len(rewards))])

    # Save results
    result = {
        "agent": agent_name,
        "budget": budget,
        "seed": seed,
        "total_reward": total_reward,
        "return": return_,
        "length": length
    }
    df = pd.DataFrame.from_records([result])
    with open(path, 'a') as f:
        df.to_csv(f,
                  sep=',',
                  encoding='utf-8',
                  header=f.tell() == 0,
                  index=False)
def evaluate(env, model):
    agent_test = None
    run_directory = None
    options = {
        "--episodes_test": 400,
        "--seed": None,
        "--recover": False,
        "--recover-from": False,
        "--no-display": True,
        "--name-from-envconfig": True,
        "--model_save_freq": 50,
        "--video_save_freq": 1,
        "--create_episode_log": True,
        "--individual_episode_log_level": 2,
        "--create_timestep_log ": False,
        "--individual_reward_tensorboard": False,
        "--create_timestep_log": False,
        "--timestep_log_freq": False,
        "--episodes": 1000,
        "--environment": "stablebaselines_highway_attention_ppo"
    }

    evaluation_test = Evaluation(env,
                                 agent_test,
                                 run_directory=run_directory,
                                 num_episodes=int(options['--episodes_test']),
                                 sim_seed=options['--seed'],
                                 recover=options['--recover']
                                 or options['--recover-from'],
                                 display_env=not options['--no-display'],
                                 display_agent=not options['--no-display'],
                                 display_rewards=not options['--no-display'],
                                 training=False,
                                 model=model,
                                 test_stable_baseline=True,
                                 options=options)
    evaluation_test.test()
Пример #6
0
def evaluate(environment_config, agent_config, options):
    """
        Evaluate an agent interacting with an environment.

    :param environment_config: the path of the environment configuration file
    :param agent_config: the path of the agent configuration file
    :param options: the evaluation options
    """
    gym.logger.set_level(gym.logger.INFO)
    env = load_environment(environment_config)
    agent = load_agent(agent_config, env)
    if options['--name-from-config']:
        directory = os.path.join(
            Evaluation.OUTPUT_FOLDER,
            os.path.basename(environment_config).split('.')[0],
            os.path.basename(agent_config).split('.')[0])
    else:
        directory = None
    options['--seed'] = int(
        options['--seed']) if options['--seed'] is not None else None
    evaluation = Evaluation(env,
                            agent,
                            directory=directory,
                            num_episodes=int(options['--episodes']),
                            sim_seed=options['--seed'],
                            display_env=not options['--no-display'],
                            display_agent=not options['--no-display'],
                            display_rewards=not options['--no-display'])
    if options['--train']:
        evaluation.train()
    elif options['--test']:
        evaluation.test()
    else:
        evaluation.close()
    if options['--analyze'] and not options['<benchmark>']:
        RunAnalyzer([evaluation.monitor.directory])
    return os.path.relpath(evaluation.monitor.directory)
from rl_agents.agents.common.factory import load_agent, load_environment

# Get the environment and agent configurations from the rl-agents repository
# %cd /content/rl-agents/scripts/
env_config = 'configs/IntersectionEnv/env.json'
agent_config = 'configs/IntersectionEnv/agents/DQNAgent/ego_attention_2h.json'

env = load_environment(env_config)
agent = load_agent(agent_config, env)
evaluation = Evaluation(env, agent, num_episodes=3000, display_env=False)
print(f"Ready to train {agent} on {env}")
"""Run tensorboard locally to visualize training."""

# Commented out IPython magic to ensure Python compatibility.
# %tensorboard --logdir "{evaluation.directory}"
"""Start training. This should take about an hour."""

evaluation.train()
"""Progress can be visualised in the tensorboard cell above, which should update every 30s (or manually). You may need to click the *Fit domain to data* buttons below each graph.

## Testing

Run the learned policy for a few episodes.
"""

env = load_environment(env_config)
env.configure({"offscreen_rendering": True})
agent = load_agent(agent_config, env)
evaluation = Evaluation(env, agent, num_episodes=3, recover=True)
evaluation.test()
show_videos(evaluation.run_directory)
Пример #8
0
def evaluate(experiment):
    # Prepare workspace
    seed, budget, agent_config, env_config, path = experiment
    gym.logger.set_level(gym.logger.DISABLED)
    path = Path(path)
    path.parent.mkdir(parents=True, exist_ok=True)

    # Make environment
    env = load_environment(env_config)

    # Make agent
    agent_name, agent_config = agent_config
    agent_config["budget"] = int(budget)
    agent = agent_factory(env, agent_config)

    logger.debug("Evaluating agent {} with budget {} on seed {}".format(
        agent_name, budget, seed))

    # Compute true value
    compute_regret = True
    compute_return = False
    if compute_regret:
        env.seed(seed)
        observation = env.reset()
        vi = agent_factory(env, agent_configs()["value_iteration"])
        best_action = vi.act(observation)
        action = agent.act(observation)
        q = vi.state_action_value
        simple_regret = q[vi.mdp.state, best_action] - q[vi.mdp.state, action]
        gap = q[vi.mdp.state, best_action] - np.sort(q[vi.mdp.state, :])[-2]
    else:
        simple_regret = 0
        gap = 0

    if compute_return:
        # Evaluate
        evaluation = Evaluation(env,
                                agent,
                                directory=Path("out") / "planners" /
                                agent_name,
                                num_episodes=1,
                                sim_seed=seed,
                                display_env=False,
                                display_agent=False,
                                display_rewards=False)
        evaluation.test()
        rewards = evaluation.monitor.stats_recorder.episode_rewards_[0]
        length = evaluation.monitor.stats_recorder.episode_lengths[0]
        total_reward = np.sum(rewards)
        cum_discount = lambda signal: np.sum(
            [gamma**t * signal[t] for t in range(len(signal))])
        return_ = cum_discount(rewards)
        mean_return = np.mean(
            [cum_discount(rewards[t:]) for t in range(len(rewards))])
    else:
        length = 0
        total_reward = 0
        return_ = 0
        mean_return = 0

    # Save results
    result = {
        "agent": agent_name,
        "budget": budget,
        "seed": seed,
        "total_reward": total_reward,
        "return": return_,
        "mean_return": mean_return,
        "length": length,
        "simple_regret": simple_regret,
        "gap": gap
    }

    df = pd.DataFrame.from_records([result])
    with open(path, 'a') as f:
        df.to_csv(f,
                  sep=',',
                  encoding='utf-8',
                  header=f.tell() == 0,
                  index=False)
Пример #9
0
def evaluate(experiment):
    # Prepare workspace
    seed, agent_config, env_config, path = experiment
    gym.logger.set_level(gym.logger.DISABLED)
    path = Path(path)
    path.parent.mkdir(parents=True, exist_ok=True)

    # Make environment
    env = load_environment(env_config)

    # Make agent
    agent_name, agent_config = agent_config
    agent = load_agent(agent_config, env)

    # Evaluate
    print("Evaluating agent {} on seed {}".format(agent_name, seed))
    evaluation = Evaluation(env,
                            agent,
                            directory=path.parent / agent_name,
                            num_episodes=1,
                            sim_seed=seed,
                            display_env=True,
                            display_agent=True,
                            display_rewards=False)
    estimate_value = False
    if estimate_value:
        rewards, values, terminal = [], [], False
        evaluation.seed(episode=0)
        evaluation.reset()
        evaluation.training = False
        gamma = 0.99 or agent.config["gamma"]
        while not terminal:
            # Estimate state value
            oracle_env = safe_deepcopy_env(agent.env)
            oracle = load_agent(agent_configs()["oracle"], oracle_env)
            oracle_done, oracle_rewards = False, []
            while not oracle_done:
                action = oracle.act(None)
                _, oracle_reward, oracle_done, _ = oracle_env.step(action)
                oracle_rewards.append(oracle_reward)
            value = np.sum([
                gamma**t * oracle_rewards[t]
                for t in range(len(oracle_rewards))
            ])
            values.append(value)

            reward, terminal = evaluation.step()
            rewards.append(reward)
        evaluation.close()

        returns = [
            np.sum(
                [gamma**t * rewards[k + t] for t in range(len(rewards[k:]))])
            for k in range(len(rewards))
        ]

        # Save intermediate results
        df = pd.DataFrame({
            "agent": agent_name,
            "time": range(len(rewards)),
            "seed": [seed] * len(rewards),
            "reward": rewards,
            "return": returns,
            "value": values
        })
    else:
        evaluation.test()
        rewards = evaluation.monitor.stats_recorder.episode_rewards_[0]
        length = evaluation.monitor.stats_recorder.episode_lengths[0]
        total_reward = np.sum(rewards)

        cum_discount = lambda signal, gamma: np.sum(
            [gamma**t * signal[t] for t in range(len(signal))])
        return_ = cum_discount(rewards, 0.9)
        return_undisc = cum_discount(rewards, 0.99)
        result = {
            "agent": agent_name,
            "seed": seed,
            "total_reward": total_reward,
            "return": return_,
            "return_undisc": return_undisc,
            "length": length,
        }
        df = pd.DataFrame.from_records([result])
    with open(path, 'a') as f:
        df.to_csv(f,
                  sep=',',
                  encoding='utf-8',
                  header=f.tell() == 0,
                  index=False)
Пример #10
0
def evaluate(environment_config, agent_config, options):
    """
        Evaluate an agent interacting with an environment.

    :param environment_config: the path of the environment configuration file
    :param agent_config: the path of the agent configuration file
    :param options: the evaluation options
    """
    logger.configure(LOGGING_CONFIG)
    if options['--verbose']:
        logger.configure(VERBOSE_CONFIG)

    run_directory = None
    if options['--name-from-config']:
        run_directory = "{}_{}_{}".format(
            Path(agent_config).with_suffix('').name,
            datetime.datetime.now().strftime('%Y%m%d-%H%M%S'), os.getpid())
    options['--seed'] = int(
        options['--seed']) if options['--seed'] is not None else None

    env = load_environment(environment_config)
    if agent_config == "None":
        agent_config = env.config["agent_config"]
        if "auto_tau" in agent_config["exploration"] and (
                agent_config["exploration"]["auto_tau"]):
            agent_config["exploration"]["tau"] = env.config[
                "policy_frequency"] * env.config["duration"] * int(
                    options['--episodes'] *
                    env.config["controlled_vehicles"]) / 50
    agent = load_agent(agent_config, env)
    # TODO diferent display options for agent, env, rewards
    if options['--offscreen_rendering']:
        env.config['offscreen_rendering'] = True

    evaluation_train = Evaluation(env,
                                  agent,
                                  run_directory=run_directory,
                                  num_episodes=int(options['--episodes']),
                                  sim_seed=options['--seed'],
                                  recover=options['--recover']
                                  or options['--recover-from'],
                                  display_env=not options['--no-display'],
                                  display_agent=not options['--no-display'],
                                  display_rewards=not options['--no-display'],
                                  training=options['--train'],
                                  options=options)

    if options['--train']:
        evaluation_train.train()
    else:
        evaluation_train.close()

    if options['--test']:
        agent_test = load_agent(agent_config, env)
        if options['--train']:
            agent_test = evaluation_train.agent
        evaluation_test = Evaluation(
            env,
            agent_test,
            run_directory=run_directory,
            num_episodes=int(options['--episodes_test']),
            sim_seed=options['--seed'],
            recover=options['--recover'] or options['--recover-from'],
            display_env=not options['--no-display'],
            display_agent=not options['--no-display'],
            display_rewards=not options['--no-display'],
            training=False,
            options=options)

        evaluation_test.test()