def test_dist(): np.random.seed(0) p1, p2, p3 = (np.random.randn(3, 1), np.random.randn(4, 1), np.random.randn(5, 1)) q1, q2, q3 = (np.random.randn(6, 1), np.random.randn(7, 1), np.random.randn(8, 1)) # p1,p2,p3=(np.random.randn(3), np.random.randn(4), np.random.randn(5)) # q1,q2,q3=(np.random.randn(6), np.random.randn(7), np.random.randn(8)) comm = MPI.COMM_WORLD assert comm.Get_size() == 2 if comm.Get_rank() == 0: x1, x2, x3 = p1, p2, p3 elif comm.Get_rank() == 1: x1, x2, x3 = q1, q2, q3 else: assert False rms = RunningMeanStd(epsilon=0.0, shape=(1, )) U.initialize() rms.update(x1) rms.update(x2) rms.update(x3) bigvec = np.concatenate([p1, p2, p3, q1, q2, q3]) def checkallclose(x, y): print(x, y) return np.allclose(x, y) assert checkallclose(bigvec.mean(axis=0), U.eval(rms.mean)) assert checkallclose(bigvec.std(axis=0), U.eval(rms.std))
def __init__(self, env, master_policy,old_master_policy, sub_policies, old_sub_policies, comm, clip_param=0.2, entcoeff=0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64): self.clip_param = clip_param self.entcoeff = entcoeff self.optim_epochs = optim_epochs self.optim_stepsize = optim_stepsize self.optim_batchsize = optim_batchsize self.num_subpolicies = len(sub_policies) self.sub_policies = sub_policies self.master_policy = master_policy ob_space = env.observation_space ac_space = env.action_space self.sp_ac = sub_policies[0].pdtype.sample_placeholder([None]) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return # for training theta # inputs for training theta ob = U.get_placeholder_cached(name="ob") ob_master = U.get_placeholder_cached(name="adv_ob") ac_master = master_policy.pdtype.sample_placeholder([None]) loss_master = self.policy_loss_master(master_policy, old_master_policy, ob_master, ac_master, atarg, ret, clip_param) self.master_policy_var_list = master_policy.get_trainable_variables() self.master_loss = U.function([ob_master, ac_master, atarg, ret], U.flatgrad(loss_master, self.master_policy_var_list)) self.master_adam = MpiAdam(self.master_policy_var_list, comm=comm) self.assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(old_master_policy.get_variables(), master_policy.get_variables())]) self.assign_subs = [] self.change_subs = [] self.adams = [] self.losses = [] for i in range(self.num_subpolicies): varlist = sub_policies[i].get_trainable_variables() self.adams.append(MpiAdam(varlist)) # loss for test loss = self.policy_loss(sub_policies[i], sub_policies[(i-1)%2], old_sub_policies[i], ob, self.sp_ac, atarg, ret, clip_param) self.losses.append(U.function([ob, self.sp_ac, atarg, ret], U.flatgrad(loss, varlist))) self.assign_subs.append(U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(old_sub_policies[i].get_variables(), sub_policies[i].get_variables())])) self.zerograd = U.function([], self.nograd(varlist)) U.initialize() self.master_adam.sync() for i in range(self.num_subpolicies): self.adams[i].sync()
def __init__(self, env, policy, old_policy, sub_policies, old_sub_policies, comm, clip_param=0.2, entcoeff=0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64): self.policy = policy self.clip_param = clip_param self.entcoeff = entcoeff self.optim_epochs = optim_epochs self.optim_stepsize = optim_stepsize self.optim_batchsize = optim_batchsize self.num_subpolicies = len(sub_policies) self.sub_policies = sub_policies ob_space = env.observation_space ac_space = env.action_space if WRITE_SCALAR: self.scalar_writer = tf.summary.FileWriter(osp.join("savedir/",'checkpoints', 'scalar%d' % time.time())) # for training theta # inputs for training theta ob = U.get_placeholder_cached(name="ob") ac = policy.pdtype.sample_placeholder([None]) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return total_loss = self.policy_loss(policy, old_policy, ob, ac, atarg, ret, clip_param) self.master_policy_var_list = policy.get_trainable_variables() self.master_loss = U.function([ob, ac, atarg, ret], U.flatgrad(total_loss, self.master_policy_var_list)) self.master_adam = MpiAdam(self.master_policy_var_list, comm=comm) summ = tf.summary.scalar("total_loss", total_loss) self.calc_summary = U.function([ob, ac, atarg, ret],[summ]) self.assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(old_policy.get_variables(), policy.get_variables())]) self.assign_subs = [] self.change_subs = [] self.adams = [] self.losses = [] self.sp_ac = sub_policies[0].pdtype.sample_placeholder([None]) for i in range(self.num_subpolicies): varlist = sub_policies[i].get_trainable_variables() self.adams.append(MpiAdam(varlist)) # loss for test loss = self.policy_loss(sub_policies[i], old_sub_policies[i], ob, self.sp_ac, atarg, ret, clip_param) self.losses.append(U.function([ob, self.sp_ac, atarg, ret], U.flatgrad(loss, varlist))) self.assign_subs.append(U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(old_sub_policies[i].get_variables(), sub_policies[i].get_variables())])) self.zerograd = U.function([], self.nograd(varlist)) U.initialize() self.master_adam.sync() for i in range(self.num_subpolicies): self.adams[i].sync()
def test_runningmeanstd(): for (x1, x2, x3) in [ (np.random.randn(3), np.random.randn(4), np.random.randn(5)), (np.random.randn(3, 2), np.random.randn(4, 2), np.random.randn(5, 2)), ]: rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:]) U.initialize() x = np.concatenate([x1, x2, x3], axis=0) ms1 = [x.mean(axis=0), x.std(axis=0)] rms.update(x1) rms.update(x2) rms.update(x3) ms2 = U.eval([rms.mean, rms.std]) assert np.allclose(ms1, ms2)
def __init__(self, envs, policies, sub_policies, old_policies, old_sub_policies, clip_param=0.2, vfcoeff=1., entcoeff=0, divcoeff=0., optim_epochs=10, master_lr=1e-3, sub_lr=3e-4, optim_batchsize=64, envsperbatch=None, num_rollouts=None, nlstm=256, recurrent=False): self.policies = policies self.sub_policies = sub_policies self.old_policies = old_policies self.old_sub_policies = old_sub_policies self.clip_param = clip_param self.entcoeff = entcoeff self.optim_epochs = optim_epochs self.optim_batchsize = optim_batchsize self.num_master_groups = num_master_groups = len(policies) self.num_subpolicies = num_subpolicies = len(sub_policies) self.ob_space = envs[0].observation_space self.ac_space = envs[0].action_space self.nbatch = nbatch = num_rollouts * envsperbatch self.envsperbatch = envsperbatch self.master_obs = [U.get_placeholder(name="master_ob_%i"%x, dtype=tf.float32, shape=[None] + list(self.ob_space.shape)) for x in range(num_master_groups)] self.master_acs = [policies[0].pdtype.sample_placeholder([None]) for _ in range(num_master_groups)] self.master_atargs = [tf.placeholder(dtype=tf.float32, shape=[None]) for _ in range(num_master_groups)] self.master_ret = [tf.placeholder(dtype=tf.float32, shape=[None]) for _ in range(num_master_groups)] retvals = zip(*[self.policy_loss(policies[i], old_policies[i], self.master_obs[i], self.master_acs[i], self.master_atargs[i], self.master_ret[i], clip_param, mask=tf.constant(1.), vfcoeff=vfcoeff, entcoeff=entcoeff) for i in range(num_master_groups)]) self.master_losses, self.master_kl, self.master_pol_surr, self.master_vf_loss, \ self.master_entropy, self.master_values, _ = retvals master_trainers = [tf.train.AdamOptimizer(learning_rate=master_lr, name='master_adam_%i'%_) for _ in range(num_master_groups)] master_params = [policies[i].get_trainable_variables() for i in range(num_master_groups)] master_grads = [tf.gradients(self.master_losses[i], master_params[i]) for i in range(num_master_groups)] master_grads = [list(zip(g, p)) for g, p in zip(master_grads, master_params)] # TODO: gradient clipping self.assign_old_eq_new = [U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(old_policies[i].get_variables(), policies[i].get_variables())]) for i in range(num_master_groups)] self.master_train_steps = [master_trainers[i].apply_gradients(master_grads[i]) for i in range(num_master_groups)] if not recurrent: self.sub_obs = [U.get_placeholder(name="sub_ob_%i"%x, dtype=tf.float32, shape=[None] + list(self.ob_space.shape)) for x in range(num_subpolicies)] self.sub_acs = [sub_policies[0].pdtype.sample_placeholder([None]) for _ in range(num_subpolicies)] self.sub_atargs = [tf.placeholder(dtype=tf.float32, shape=[None]) for _ in range(num_subpolicies)] self.sub_ret = [tf.placeholder(dtype=tf.float32, shape=[None]) for _ in range(num_subpolicies)] self.logpacs = [tf.placeholder(dtype=tf.float32, shape=[num_subpolicies, None]) for _ in range(num_subpolicies)] self.loss_masks = [tf.placeholder(dtype=tf.float32, shape=[None]) for _ in range(num_subpolicies)] if recurrent: self.sub_obs = [U.get_placeholder(name="sub_ob_%i"%x, dtype=tf.float32, shape=[nbatch] + list(self.ob_space.shape)) for x in range(num_subpolicies)] self.sub_masks = [U.get_placeholder(name="masks_%i"%_, dtype=tf.float32, shape=[nbatch]) for _ in range(num_subpolicies)] self.sub_states = [U.get_placeholder(name="states_%i"%_, dtype=tf.float32, shape=[envsperbatch, 2*nlstm]) for _ in range(num_subpolicies)] sub_retvals = zip(*[self.policy_loss(sub_policies[i], old_sub_policies[i], self.sub_obs[i], self.sub_acs[i], self.sub_atargs[i], self.sub_ret[i], clip_param, mask=self.loss_masks[i], vfcoeff=vfcoeff, entcoeff=entcoeff, divcoeff=divcoeff, logpacs=None)#self.logpacs[i]) for i in range(num_subpolicies)]) self.sub_losses, self.sub_kl, self.sub_pol_surr, self.sub_vf_loss, \ self.sub_entropy, self.sub_values, self.div_loss = sub_retvals sub_trainers = [tf.train.AdamOptimizer(learning_rate=sub_lr) for _ in range(num_subpolicies)] sub_params = [sub_policies[i].get_trainable_variables() for i in range(num_subpolicies)] sub_grads = [tf.gradients(self.sub_losses[i], sub_params[i]) for i in range(num_subpolicies)] sub_grads = [list(zip(g, p)) for g, p in zip(sub_grads, sub_params)] # TODO: gradient clipping self.subs_assign_old_eq_new = [U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(old_sub_policies[i].get_variables(), sub_policies[i].get_variables())]) for i in range(num_subpolicies)] self.sub_train_steps = [sub_trainers[i].apply_gradients(sub_grads[i]) for i in range(num_subpolicies)] U.initialize()
def __init__(self, env, sub_policy, old_sub_policy, comm, clip_param=0.2, entcoeff=0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64, args=None): # self.policy = policy self.clip_param = clip_param self.entcoeff = entcoeff self.optim_epochs = optim_epochs self.optim_stepsize = optim_stepsize self.optim_batchsize = optim_batchsize # self.num_subpolicies = len(sub_policies) self.sub_policy = sub_policy self.args = args ob_space = env.observation_space ac_space = env.action_space # for training theta # inputs for training theta ob = U.get_placeholder_cached(name="ob") # ac = policy.pdtype.sample_placeholder([None]) atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return entcoeff = tf.placeholder(dtype=tf.float32, name="entcoef") # total_loss = self.policy_loss(policy, old_policy, ob, ac, atarg, ret, clip_param, entcoeff) # self.master_policy_var_list = policy.get_trainable_variables() # self.master_loss = U.function([ob, ac, atarg, ret, entcoeff], U.flatgrad(total_loss, self.master_policy_var_list)) # self.master_adam = MpiAdam(self.master_policy_var_list, comm=comm) # self.assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv) # for (oldv, newv) in zipsame(old_policy.get_variables(), policy.get_variables())]) self.assign_subs = [] self.change_subs = [] self.adams = [] self.losses = [] self.sp_ac = sub_policy.pdtype.sample_placeholder([None]) # for i in range(self.num_subpolicies): varlist = sub_policy.get_trainable_variables() self.adams.append(MpiAdam(varlist)) # loss for test loss = self.policy_loss(sub_policy, old_sub_policy, ob, self.sp_ac, atarg, ret, clip_param, entcoeff) self.losses.append( U.function([ob, self.sp_ac, atarg, ret, entcoeff], U.flatgrad(loss, varlist))) self.assign_subs.append( U.function( [], [], updates=[ tf.assign(oldv, newv) for (oldv, newv) in zipsame(old_sub_policy.get_variables(), sub_policy.get_variables()) ])) self.zerograd = U.function([], self.nograd(varlist)) U.initialize() # self.master_adam.sync() # for i in range(self.num_subpolicies): self.adams[0].sync()