Пример #1
0
    def __init__(self,
                 preprocessor_spec,
                 policy_spec,
                 exploration_spec=None,
                 **kwargs):
        """
        Args:
            preprocessor_spec (Union[list,dict,PreprocessorSpec]):
                - A dict if the state from the Env will come in as a ContainerSpace (e.g. Dict). In this case, each
                    each key in this dict specifies, which value in the incoming dict should go through which PreprocessorStack.
                - A list with layer specs.
                - A PreprocessorStack object.

            policy_spec (Union[dict,Policy]): A specification dict for a Policy object or a Policy object directly.

            exploration_spec (Union[dict,Exploration]): A specification dict for an Exploration object or an Exploration
                object directly.
        """
        super(ActorComponent,
              self).__init__(scope=kwargs.pop("scope", "actor-component"),
                             **kwargs)

        self.preprocessor = PreprocessorStack.from_spec(preprocessor_spec)
        self.policy = Policy.from_spec(policy_spec)
        self.num_nn_inputs = self.policy.neural_network.num_inputs
        self.exploration = Exploration.from_spec(exploration_spec)

        self.tuple_merger = ContainerMerger(is_tuple=True,
                                            merge_tuples_into_one=True)
        self.tuple_splitter = ContainerSplitter(
            tuple_length=self.num_nn_inputs)

        self.add_components(self.policy, self.exploration, self.preprocessor,
                            self.tuple_merger, self.tuple_splitter)
Пример #2
0
    def __init__(self,
                 preprocessor_spec,
                 policy_spec,
                 exploration_spec,
                 max_likelihood=None,
                 **kwargs):
        """
        Args:
            preprocessor_spec (Union[list,dict,PreprocessorSpec]):
                - A dict if the state from the Env will come in as a ContainerSpace (e.g. Dict). In this case, each
                    each key in this dict specifies, which value in the incoming dict should go through which PreprocessorStack.
                - A list with layer specs.
                - A PreprocessorStack object.
            policy_spec (Union[dict,Policy]): A specification dict for a Policy object or a Policy object directly.
            exploration_spec (Union[dict,Exploration]): A specification dict for an Exploration object or an Exploration
                object directly.
            max_likelihood (Optional[bool]): See Policy's property `max_likelihood`.
                If not None, overwrites the equally named setting in the Policy object (defined by `policy_spec`).
        """
        super(ActorComponent,
              self).__init__(scope=kwargs.pop("scope", "actor-component"),
                             **kwargs)

        self.preprocessor = PreprocessorStack.from_spec(preprocessor_spec)
        self.policy = Policy.from_spec(policy_spec)
        self.exploration = Exploration.from_spec(exploration_spec)

        self.max_likelihood = max_likelihood

        self.add_components(self.policy, self.exploration, self.preprocessor)
Пример #3
0
    def test_exploration_with_continuous_action_space(self):
        # TODO not portable, redo with more general mean/stddev checks over a sample of distributed outputs.
        return
        # 2x2 action-pick, each composite action with 5 categories.
        action_space = FloatBox(shape=(2,2), add_batch_rank=True)

        distribution = Normal()
        action_adapter = ActionAdapter(action_space=action_space)

        # Our distribution to go into the Exploration object.
        nn_output_space = FloatBox(shape=(13,), add_batch_rank=True)  # 13: Any flat nn-output should be ok.

        exploration = Exploration.from_spec(dict(noise_spec=dict(type="gaussian_noise", mean=10.0, stddev=2.0)))

        # The Component to test.
        exploration_pipeline = Component(scope="continuous-plus-noise")
        exploration_pipeline.add_components(action_adapter, distribution, exploration, scope="exploration-pipeline")

        @rlgraph_api(component=exploration_pipeline)
        def get_action(self_, nn_output):
            _, parameters, _ = action_adapter.get_logits_probabilities_log_probs(nn_output)
            sample_stochastic = distribution.sample_stochastic(parameters)
            sample_deterministic = distribution.sample_deterministic(parameters)
            action = exploration.get_action(sample_stochastic, sample_deterministic)
            return action

        @rlgraph_api(component=exploration_pipeline)
        def get_noise(self_):
            return exploration.noise_component.get_noise()

        test = ComponentTest(component=exploration_pipeline, input_spaces=dict(nn_output=nn_output_space),
                             action_space=action_space)

        # Collect outputs in `collected` list to compare moments.
        collected = list()
        for _ in range_(1000):
            test.test("get_noise", fn_test=lambda component_test, outs: collected.append(outs))

        self.assertAlmostEqual(10.0, np.mean(collected), places=1)
        self.assertAlmostEqual(2.0, np.std(collected), places=1)

        np.random.seed(10)
        input_ = nn_output_space.sample(size=3)
        expected = np.array([[[13.163095, 8.46925],
                              [10.375976, 5.4675055]],
                             [[13.239931, 7.990649],
                              [10.03761, 10.465796]],
                             [[10.280741, 7.2384844],
                              [10.040194, 8.248206]]], dtype=np.float32)
        test.test(("get_action", input_), expected_outputs=expected, decimals=3)
Пример #4
0
    def test_exploration_with_discrete_action_space(self):
        nn_output_space = FloatBox(shape=(13, ), add_batch_rank=True)
        time_step_space = IntBox(10000)
        # 2x2 action-pick, each composite action with 5 categories.
        action_space = IntBox(5, shape=(2, 2), add_batch_rank=True)

        # Our distribution to go into the Exploration object.
        distribution = Categorical()
        action_adapter = ActionAdapter(action_space=action_space)

        exploration = Exploration.from_spec(
            dict(epsilon_spec=dict(decay_spec=dict(type="linear_decay",
                                                   from_=1.0,
                                                   to_=0.0,
                                                   start_timestep=0,
                                                   num_timesteps=10000))))
        # The Component to test.
        exploration_pipeline = Component(action_adapter,
                                         distribution,
                                         exploration,
                                         scope="exploration-pipeline")

        @rlgraph_api(component=exploration_pipeline)
        def get_action(self_, nn_output, time_step):
            out = action_adapter.get_logits_probabilities_log_probs(nn_output)
            sample = distribution.sample_deterministic(out["probabilities"])
            action = exploration.get_action(sample, time_step)
            return action

        test = ComponentTest(component=exploration_pipeline,
                             input_spaces=dict(nn_output=nn_output_space,
                                               time_step=int),
                             action_space=action_space)

        # With exploration: Check, whether actions are equally distributed.
        nn_outputs = nn_output_space.sample(2)
        time_steps = time_step_space.sample(30)
        # Collect action-batch-of-2 for each of our various random time steps.
        # Each action is an int box of shape=(2,2)
        actions = np.ndarray(shape=(30, 2, 2, 2), dtype=np.int)
        for i, time_step in enumerate(time_steps):
            actions[i] = test.test(("get_action", [nn_outputs, time_step]),
                                   expected_outputs=None)

        # Assert some distribution of the actions.
        mean_action = actions.mean()
        stddev_action = actions.std()
        self.assertAlmostEqual(mean_action, 2.0, places=0)
        self.assertAlmostEqual(stddev_action, 1.0, places=0)

        # Without exploration (epsilon is force-set to 0.0): Check, whether actions are always the same
        # (given same nn_output all the time).
        nn_outputs = nn_output_space.sample(2)
        time_steps = time_step_space.sample(30) + 10000
        # Collect action-batch-of-2 for each of our various random time steps.
        # Each action is an int box of shape=(2,2)
        actions = np.ndarray(shape=(30, 2, 2, 2), dtype=np.int)
        for i, time_step in enumerate(time_steps):
            actions[i] = test.test(("get_action", [nn_outputs, time_step]),
                                   expected_outputs=None)

        # Assert zero stddev of the single action components.
        stddev_action_a = actions[:, 0, 0, 0].std(
        )  # batch item 0, action-component (0,0)
        self.assertAlmostEqual(stddev_action_a, 0.0, places=1)
        stddev_action_b = actions[:, 1, 1, 0].std(
        )  # batch item 1, action-component (1,0)
        self.assertAlmostEqual(stddev_action_b, 0.0, places=1)
        stddev_action_c = actions[:, 0, 0, 1].std(
        )  # batch item 0, action-component (0,1)
        self.assertAlmostEqual(stddev_action_c, 0.0, places=1)
        stddev_action_d = actions[:, 1, 1, 1].std(
        )  # batch item 1, action-component (1,1)
        self.assertAlmostEqual(stddev_action_d, 0.0, places=1)
        self.assertAlmostEqual(actions.std(), 1.0, places=0)
Пример #5
0
    def test_exploration_with_discrete_container_action_space(self):
        nn_output_space = FloatBox(shape=(12, ), add_batch_rank=True)
        time_step_space = IntBox(10000)
        # Some container action space.
        action_space = Dict(dict(a=IntBox(3), b=IntBox(2), c=IntBox(4)),
                            add_batch_rank=True)

        # Our distribution to go into the Exploration object.
        distribution_a = Categorical(scope="d_a")
        distribution_b = Categorical(scope="d_b")
        distribution_c = Categorical(scope="d_c")
        action_adapter_a = ActionAdapter(action_space=action_space["a"],
                                         scope="aa_a")
        action_adapter_b = ActionAdapter(action_space=action_space["b"],
                                         scope="aa_b")
        action_adapter_c = ActionAdapter(action_space=action_space["c"],
                                         scope="aa_c")

        exploration = Exploration.from_spec(
            dict(epsilon_spec=dict(decay_spec=dict(type="linear_decay",
                                                   from_=1.0,
                                                   to_=0.0,
                                                   start_timestep=0,
                                                   num_timesteps=10000))))
        # The Component to test.
        exploration_pipeline = Component(action_adapter_a,
                                         action_adapter_b,
                                         action_adapter_c,
                                         distribution_a,
                                         distribution_b,
                                         distribution_c,
                                         exploration,
                                         scope="exploration-pipeline")

        @rlgraph_api(component=exploration_pipeline)
        def get_action(self_, nn_output, time_step):
            out_a = action_adapter_a.get_logits_probabilities_log_probs(
                nn_output)
            out_b = action_adapter_b.get_logits_probabilities_log_probs(
                nn_output)
            out_c = action_adapter_c.get_logits_probabilities_log_probs(
                nn_output)
            sample_a = distribution_a.sample_deterministic(
                out_a["probabilities"])
            sample_b = distribution_b.sample_deterministic(
                out_b["probabilities"])
            sample_c = distribution_c.sample_deterministic(
                out_c["probabilities"])
            sample = self_._graph_fn_merge_actions(sample_a, sample_b,
                                                   sample_c)
            action = exploration.get_action(sample, time_step)
            return action

        @graph_fn(component=exploration_pipeline)
        def _graph_fn_merge_actions(self, a, b, c):
            return DataOpDict(a=a, b=b, c=c)

        test = ComponentTest(component=exploration_pipeline,
                             input_spaces=dict(nn_output=nn_output_space,
                                               time_step=int),
                             action_space=action_space)

        # With exploration: Check, whether actions are equally distributed.
        batch_size = 2
        num_time_steps = 30
        nn_outputs = nn_output_space.sample(batch_size)
        time_steps = time_step_space.sample(num_time_steps)
        # Collect action-batch-of-2 for each of our various random time steps.
        actions_a = np.ndarray(shape=(num_time_steps, batch_size),
                               dtype=np.int)
        actions_b = np.ndarray(shape=(num_time_steps, batch_size),
                               dtype=np.int)
        actions_c = np.ndarray(shape=(num_time_steps, batch_size),
                               dtype=np.int)
        for i, t in enumerate(time_steps):
            a = test.test(("get_action", [nn_outputs, t]),
                          expected_outputs=None)
            actions_a[i] = a["a"]
            actions_b[i] = a["b"]
            actions_c[i] = a["c"]

        # Assert some distribution of the actions.
        mean_action_a = actions_a.mean()
        stddev_action_a = actions_a.std()
        self.assertAlmostEqual(mean_action_a, 1.0, places=0)
        self.assertAlmostEqual(stddev_action_a, 1.0, places=0)
        mean_action_b = actions_b.mean()
        stddev_action_b = actions_b.std()
        self.assertAlmostEqual(mean_action_b, 0.5, places=0)
        self.assertAlmostEqual(stddev_action_b, 0.5, places=0)
        mean_action_c = actions_c.mean()
        stddev_action_c = actions_c.std()
        self.assertAlmostEqual(mean_action_c, 1.5, places=0)
        self.assertAlmostEqual(stddev_action_c, 1.0, places=0)

        # Without exploration (epsilon is force-set to 0.0): Check, whether actions are always the same
        # (given same nn_output all the time).
        nn_outputs = nn_output_space.sample(batch_size)
        time_steps = time_step_space.sample(num_time_steps) + 10000
        # Collect action-batch-of-2 for each of our various random time steps.
        actions_a = np.ndarray(shape=(num_time_steps, batch_size),
                               dtype=np.int)
        actions_b = np.ndarray(shape=(num_time_steps, batch_size),
                               dtype=np.int)
        actions_c = np.ndarray(shape=(num_time_steps, batch_size),
                               dtype=np.int)
        for i, t in enumerate(time_steps):
            a = test.test(("get_action", [nn_outputs, t]),
                          expected_outputs=None)
            actions_a[i] = a["a"]
            actions_b[i] = a["b"]
            actions_c[i] = a["c"]

        # Assert zero stddev of the single action components.
        stddev_action = actions_a[:,
                                  0].std()  # batch item 0, action-component a
        self.assertAlmostEqual(stddev_action, 0.0, places=1)
        stddev_action = actions_a[:,
                                  1].std()  # batch item 1, action-component a
        self.assertAlmostEqual(stddev_action, 0.0, places=1)

        stddev_action = actions_b[:,
                                  0].std()  # batch item 0, action-component b
        self.assertAlmostEqual(stddev_action, 0.0, places=1)
        stddev_action = actions_b[:,
                                  1].std()  # batch item 1, action-component b
        self.assertAlmostEqual(stddev_action, 0.0, places=1)

        stddev_action = actions_c[:,
                                  0].std()  # batch item 0, action-component c
        self.assertAlmostEqual(stddev_action, 0.0, places=1)
        stddev_action = actions_c[:,
                                  1].std()  # batch item 1, action-component c
        self.assertAlmostEqual(stddev_action, 0.0, places=1)