def test_keras_style_two_separate_input_spaces(self):
        # Define two input Spaces first. Independently (no container).
        input_space_1 = IntBox(3, add_batch_rank=True)
        input_space_2 = FloatBox(shape=(4,), add_batch_rank=True)

        # One-hot flatten the int tensor.
        flatten_layer_out = ReShape(flatten=True, flatten_categories=True)(input_space_1)
        # Run the float tensor through two dense layers.
        dense_1_out = DenseLayer(units=3, scope="d1")(input_space_2)
        dense_2_out = DenseLayer(units=5, scope="d2")(dense_1_out)
        # Concat everything.
        cat_out = ConcatLayer()(flatten_layer_out, dense_2_out)

        # Use the `outputs` arg to allow your network to trace back the data flow until the input space.
        neural_net = NeuralNetwork(inputs=[input_space_1, input_space_2], outputs=cat_out)

        test = ComponentTest(component=neural_net, input_spaces=dict(inputs=[input_space_1, input_space_2]))

        var_dict = neural_net.variable_registry
        w1_value = test.read_variable_values(var_dict["neural-network/d1/dense/kernel"])
        b1_value = test.read_variable_values(var_dict["neural-network/d1/dense/bias"])
        w2_value = test.read_variable_values(var_dict["neural-network/d2/dense/kernel"])
        b2_value = test.read_variable_values(var_dict["neural-network/d2/dense/bias"])

        # Batch of size=n.
        input_ = [input_space_1.sample(4), input_space_2.sample(4)]

        expected = np.concatenate([  # concat everything
            one_hot(input_[0]),  # int flattening
            dense_layer(dense_layer(input_[1], w1_value, b1_value), w2_value, b2_value)  # float -> 2 x dense
        ], axis=-1)
        out = test.test(("call", input_), expected_outputs=expected)

        test.terminate()
Пример #2
0
    def test_specifiable_server(self):
        action_space = IntBox(2)
        state_space = FloatBox()
        env_spec = dict(type="random_env",
                        state_space=state_space,
                        action_space=action_space,
                        deterministic=True)
        # Create the server, but don't start it yet. This will be done fully automatically by the tf-Session.
        specifiable_server = SpecifiableServer(
            Environment, env_spec, dict(step_flow=[state_space, float, bool]),
            "terminate")

        # ret are ops now in the graph.
        ret1 = specifiable_server.step_flow(action_space.sample())
        ret2 = specifiable_server.step_flow(action_space.sample())

        # Check all 3 outputs of the Env step (next state, reward, terminal).
        self.assertEqual(ret1[0].shape, ())
        self.assertEqual(ret1[0].dtype, convert_dtype("float32"))
        self.assertEqual(ret1[1].shape, ())
        self.assertEqual(ret1[1].dtype, convert_dtype("float32"))
        self.assertEqual(ret1[2].shape, ())
        self.assertEqual(ret1[2].dtype, convert_dtype("bool"))
        self.assertEqual(ret2[0].shape, ())
        self.assertEqual(ret2[0].dtype, convert_dtype("float32"))
        self.assertEqual(ret2[1].shape, ())
        self.assertEqual(ret2[1].dtype, convert_dtype("float32"))
        self.assertEqual(ret2[2].shape, ())
        self.assertEqual(ret2[2].dtype, convert_dtype("bool"))

        # Start the session and run the op, then check its actual values.
        with tf.train.SingularMonitoredSession(
                hooks=[SpecifiableServerHook()]) as sess:
            out1 = sess.run(ret1)
            out2 = sess.run(ret2)

        # next state
        self.assertAlmostEqual(out1[0], 0.7713, places=4)
        self.assertAlmostEqual(out2[0], 0.7488, places=4)
        # reward
        self.assertAlmostEqual(out1[1], 0.0208, places=4)
        self.assertAlmostEqual(out2[1], 0.4985, places=4)
        # terminal
        self.assertTrue(out1[2] is np.bool_(False))
        self.assertTrue(out2[2] is np.bool_(False))