def train_rls(): #Select regparam with leave-one-out cross-validation X_train, Y_train, X_test, Y_test = load_housing() learner = RLS(X_train, Y_train) best_regparam = None best_error = float("inf") #exponential grid of possible regparam values log_regparams = range(-15, 16) for log_regparam in log_regparams: regparam = 2.**log_regparam #RLS is re-trained with the new regparam, this #is very fast due to computational short-cut learner.solve(regparam) #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() e = sqerror(Y_train, P_loo) print("regparam 2**%d, loo-error %f" %(log_regparam, e)) if e < best_error: best_error = e best_regparam = regparam learner.solve(best_regparam) P_test = learner.predict(X_test) print("best regparam %f with loo-error %f" %(best_regparam, best_error)) print("test error %f" %sqerror(Y_test, P_test))
def train_rls(): X_train, Y_train, foo = read_svmlight("a1a.t") X_test, Y_test, foo = read_svmlight("a1a", X_train.shape[1]) learner = RLS(X_train, Y_train) best_regparam = None best_accuracy = 0. #exponential grid of possible regparam values log_regparams = range(-15, 16) for log_regparam in log_regparams: regparam = 2.**log_regparam #RLS is re-trained with the new regparam, this #is very fast due to computational short-cut learner.solve(regparam) #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() acc = accuracy(Y_train, P_loo) print("regparam 2**%d, loo-accuracy %f" %(log_regparam, acc)) if acc > best_accuracy: best_accuracy = acc best_regparam = regparam learner.solve(best_regparam) P_test = learner.predict(X_test) print("best regparam %f with loo-accuracy %f" %(best_regparam, best_accuracy)) print("test set accuracy %f" %accuracy(Y_test, P_test))
def train_rls(): #Select regparam with leave-one-out cross-validation X_train, Y_train, X_test, Y_test = load_housing() learner = RLS(X_train, Y_train) best_regparam = None best_error = float("inf") #exponential grid of possible regparam values log_regparams = range(-15, 16) for log_regparam in log_regparams: regparam = 2.**log_regparam #RLS is re-trained with the new regparam, this #is very fast due to computational short-cut learner.solve(regparam) #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() e = sqerror(Y_train, P_loo) print("regparam 2**%d, loo-error %f" % (log_regparam, e)) if e < best_error: best_error = e best_regparam = regparam learner.solve(best_regparam) P_test = learner.predict(X_test) print("best regparam %f with loo-error %f" % (best_regparam, best_error)) print("test error %f" % sqerror(Y_test, P_test))
def train_rls(): #Selects both the gamma parameter for Gaussian kernel, and regparam with loocv X_train, Y_train, X_test, Y_test = load_housing() regparams = [2.**i for i in range(-15, 16)] gammas = regparams best_regparam = None best_gamma = None best_error = float("inf") for gamma in gammas: #New RLS is initialized for each kernel parameter learner = RLS(X_train, Y_train, kernel="GaussianKernel", gamma=gamma) for regparam in regparams: #RLS is re-trained with the new regparam, this #is very fast due to computational short-cut learner.solve(regparam) #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() e = sqerror(Y_train, P_loo) #print "regparam", regparam, "gamma", gamma, "loo-error", e if e < best_error: best_error = e best_regparam = regparam best_gamma = gamma learner = RLS(X_train, Y_train, regparam=best_regparam, kernel="GaussianKernel", gamma=best_gamma) P_test = learner.predict(X_test) print("best parameters gamma %f regparam %f" % (best_gamma, best_regparam)) print("best leave-one-out error %f" % best_error) print("test error %f" % sqerror(Y_test, P_test))
def test_loo(self): for X in [self.Xtrain1, self.Xtrain2]: for Y in [self.Ytrain1, self.Ytrain2]: m = X.shape[0] #LOO with linear kernel rls1 = RLS(X, Y, regparam=7.0, bias=3.0) P1 = rls1.leave_one_out() P2 = [] for i in range(X.shape[0]): X_train = np.delete(X, i, axis=0) Y_train = np.delete(Y, i, axis=0) X_test = X[i] rls2 = RLS(X_train, Y_train, regparam=7.0, bias=3.0) P2.append(rls2.predict(X_test)) P2 = np.array(P2) assert_allclose(P1, P2) #Fast regularization rls1.solve(1024) P1 = rls1.leave_one_out() P2 = [] for i in range(X.shape[0]): X_train = np.delete(X, i, axis=0) Y_train = np.delete(Y, i, axis=0) X_test = X[i] rls2 = RLS(X_train, Y_train, regparam=1024, bias=3.0) P2.append(rls2.predict(X_test)) P2 = np.array(P2) assert_allclose(P1, P2) #kernels rls1 = RLS(X, Y, kernel="GaussianKernel", gamma=0.01) P1 = rls1.leave_one_out() P2 = [] for i in range(X.shape[0]): X_train = np.delete(X, i, axis=0) Y_train = np.delete(Y, i, axis=0) X_test = X[i] rls2 = RLS(X_train, Y_train, kernel="GaussianKernel", gamma=0.01) P2.append(rls2.predict(X_test)) P2 = np.array(P2) assert_allclose(P1, P2)
def train_rls(): X_train, Y_train, X_test, Y_test = load_housing() learner = RLS(X_train, Y_train, kernel="LinearKernel", bias=1, regparam=1) #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() #Test set predictions P_test = learner.predict(X_test) print("leave-one-out error %f" % sqerror(Y_train, P_loo)) print("test error %f" % sqerror(Y_test, P_test)) #Sanity check, can we do better than predicting mean of training labels? print("mean predictor %f" % sqerror(Y_test, np.ones(Y_test.shape) * np.mean(Y_train)))
def plot_rls(): #Select regparam with k-fold cross-validation, #where instances related to a single sentence form #together a fold X_train = read_sparse("train_2000_x.txt") Y_train = np.loadtxt("train_2000_y.txt") X_test = read_sparse("test_2000_x.txt", X_train.shape[1]) Y_test = np.loadtxt("test_2000_y.txt") #list of sentence ids ids = np.loadtxt("train_2000_qids.txt") #mapped to a list of lists, where each list #contains indices for one fold folds = map_ids(ids) learner = RLS(X_train, Y_train) best_regparam = None best_error = float("inf") #exponential grid of possible regparam values log_regparams = range(-15, 16) kfold_errors = [] loo_errors = [] test_errors = [] for log_regparam in log_regparams: regparam = 2.**log_regparam #RLS is re-trained with the new regparam, this #is very fast due to computational short-cut learner.solve(regparam) #K-fold cross-validation perfs = [] for fold in folds: #computes holdout predictions, where instances #in fold are left out of training set P = learner.holdout(fold) perfs.append(sqerror(Y_train[fold], P)) e_kfold = np.mean(perfs) kfold_errors.append(e_kfold) P_loo = learner.leave_one_out() e_loo = sqerror(Y_train, P_loo) loo_errors.append(e_loo) P_test = learner.predict(X_test) e_test = sqerror(Y_test, P_test) test_errors.append(e_test) plt.semilogy(log_regparams, loo_errors, label="leave-one-out") plt.semilogy(log_regparams, kfold_errors, label="leave-sentence-out") plt.semilogy(log_regparams, test_errors, label="test error") plt.xlabel("$log_2(\lambda)$") plt.ylabel("mean squared error") plt.legend(loc=3) plt.show()
def train_rls(): X_train, Y_train, X_test, Y_test = load_housing() #select randomly 100 basis vectors indices = range(X_train.shape[0]) indices = random.sample(indices, 100) basis_vectors = X_train[indices] learner = RLS(X_train, Y_train, basis_vectors = basis_vectors, kernel="GaussianKernel", regparam=0.0003, gamma=0.00003) #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() #Test set predictions P_test = learner.predict(X_test) print("leave-one-out error %f" %sqerror(Y_train, P_loo)) print("test error %f" %sqerror(Y_test, P_test)) #Sanity check, can we do better than predicting mean of training labels? print("mean predictor %f" %sqerror(Y_test, np.ones(Y_test.shape)*np.mean(Y_train)))
def train_rls(): X_train, Y_train, foo = read_svmlight("a1a.t") X_test, Y_test, foo = read_svmlight("a1a", X_train.shape[1]) loo_aucs = [] test_aucs = [] for i in range(1000): X_small = X_train[i * 30:i * 30 + 30] Y_small = Y_train[i * 30:i * 30 + 30] learner = RLS(X_small, Y_small) P_loo = learner.leave_one_out() loo_a = auc(Y_small, P_loo) P_test = learner.predict(X_test) test_a = auc(Y_test, P_test) loo_aucs.append(loo_a) test_aucs.append(test_a) print("mean loo auc over 1000 repetitions %f" % np.mean(loo_aucs)) print("mean test auc over 1000 repetitions %f" % np.mean(test_aucs))
def train_rls(): #Trains RLS with a precomputed kernel matrix X_train, Y_train, X_test, Y_test = load_housing() #Minor techincal detail: adding 1.0 simulates the effect of adding a #constant valued bias feature, as is done by 'LinearKernel' by deafault K_train = np.dot(X_train, X_train.T) + 1.0 K_test = np.dot(X_test, X_train.T) + 1.0 learner = RLS(K_train, Y_train, kernel="PrecomputedKernel") #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() #Test set predictions P_test = learner.predict(K_test) print("leave-one-out error %f" % sqerror(Y_train, P_loo)) print("test error %f" % sqerror(Y_test, P_test)) #Sanity check, can we do better than predicting mean of training labels? print("mean predictor %f" % sqerror(Y_test, np.ones(Y_test.shape) * np.mean(Y_train)))
def train_rls(): X_train, Y_train, X_test, Y_test = load_housing() kernel = GaussianKernel(X_train, gamma=0.00003) K_train = kernel.getKM(X_train) K_test = kernel.getKM(X_test) learner = RLS(K_train, Y_train, kernel="PrecomputedKernel", regparam=0.0003) #Leave-one-out cross-validation predictions, this is fast due to #computational short-cut P_loo = learner.leave_one_out() #Test set predictions P_test = learner.predict(K_test) print("leave-one-out error %f" % sqerror(Y_train, P_loo)) print("test error %f" % sqerror(Y_test, P_test)) #Sanity check, can we do better than predicting mean of training labels? print("mean predictor %f" % sqerror(Y_test, np.ones(Y_test.shape) * np.mean(Y_train)))
class LooRLS(object): def __init__(self): self.learner = None self.y_src = None self.measure = None def fit(self, X_src, y_src, X_tgt_known, y_tgt_known, X_tgt_unknown, y_tgt_unknown, verbose=False): # Map labels from set {1,2,3} to one-vs-all encoding if np.count_nonzero(y_src) >= len(y_src): zerolabels = False else: zerolabels = True y_src = to_one_vs_all(y_src, zerolabels) regparams = [2.**i for i in range(-15, 16)] if len(np.unique(y_src)) > 2: self.measure = ova_accuracy else: self.measure = accuracy self.learner = LeaveOneOutRLS(X_src, y_src, regparams=regparams, measure=self.measure) p_tgt = self.learner.predict(X_tgt_known) # ova_accuracy computes one-vs-all classification accuracy directly between transformed # class label matrix, and a matrix of predictions, where each column corresponds to a class self.learner = RLS(X_src, y_src) best_regparam = None best_accuracy = 0. # exponential grid of possible regparam values log_regparams = range(-15, 16) for log_regparam in log_regparams: regparam = 2.**log_regparam # RLS is re-trained with the new regparam, this # is very fast due to computational short-cut self.learner.solve(regparam) # Leave-one-out cross-validation predictions, this is fast due to # computational short-cut P_loo = self.learner.leave_one_out() acc = self.measure(y_src, P_loo) if verbose == True: print("LooRLS regparam 2**%d, loo-accuracy %f" % (log_regparam, acc)) if acc > best_accuracy: best_accuracy = acc best_regparam = regparam self.learner.solve(best_regparam) if verbose == True: print("LooRLS best regparam %f with loo-accuracy %f" % (best_regparam, best_accuracy)) def predict(self, X, y=None): ypred = self.learner.predict(X) if y is not None: if np.count_nonzero(y) >= len(y): zerolabels = False else: zerolabels = True y = to_one_vs_all(y, zerolabels) return ypred, self.measure(y, ypred) return ypred
def loo_core(X,y,regparam): learner = RLS(X,y,regparam, bias=0.) p = learner.leave_one_out() e = sqerror(y, p) return e
def testRLS(self): print print print print print("Testing the cross-validation routines of the RLS module.") print print floattype = np.float64 m, n = 400, 100 Xtrain = np.random.rand(m, n) K = np.dot(Xtrain, Xtrain.T) ylen = 2 Y = np.zeros((m, ylen), dtype=floattype) Y = np.random.rand(m, ylen) hoindices = [45] hoindices2 = [45, 50] hoindices3 = [45, 50, 55] hocompl = list(set(range(m)) - set(hoindices)) Kho = K[np.ix_(hocompl, hocompl)] Yho = Y[hocompl] kwargs = {} kwargs['Y'] = Y kwargs['X'] = K kwargs['kernel'] = 'PrecomputedKernel' dualrls = RLS(**kwargs) kwargs = {} kwargs["X"] = Xtrain kwargs["Y"] = Y kwargs["bias"] = 0. primalrls = RLS(**kwargs) kwargs = {} kwargs['Y'] = Yho kwargs['X'] = Kho kwargs['kernel'] = 'PrecomputedKernel' dualrls_naive = RLS(**kwargs) testkm = K[np.ix_(hocompl, hoindices)] trainX = Xtrain[hocompl] testX = Xtrain[hoindices] kwargs = {} kwargs['Y'] = Yho kwargs['X'] = trainX kwargs["bias"] = 0. primalrls_naive = RLS(**kwargs) loglambdas = range(-5, 5) for j in range(0, len(loglambdas)): regparam = 2.**loglambdas[j] print print("Regparam 2^%1d" % loglambdas[j]) dumbho = np.dot( testkm.T, np.dot(la.inv(Kho + regparam * np.eye(Kho.shape[0])), Yho)) dumbho = np.squeeze(dumbho) print(str(dumbho) + ' Dumb HO (dual)') dualrls_naive.solve(regparam) predho1 = dualrls_naive.predictor.predict(testkm.T) print(str(predho1) + ' Naive HO (dual)') dualrls.solve(regparam) predho2 = dualrls.holdout(hoindices) print(str(predho2) + ' Fast HO (dual)') dualrls.solve(regparam) predho = dualrls.leave_one_out()[hoindices[0]] print(str(predho) + ' Fast LOO (dual)') primalrls_naive.solve(regparam) predho3 = primalrls_naive.predictor.predict(testX) print(str(predho3) + ' Naive HO (primal)') primalrls.solve(regparam) predho4 = primalrls.holdout(hoindices) print(str(predho4) + ' Fast HO (primal)') for predho in [predho1, predho2, predho3, predho4]: self.assertEqual(dumbho.shape, predho.shape) assert_allclose(dumbho, predho) #for row in range(predho.shape[0]): # for col in range(predho.shape[1]): # self.assertAlmostEqual(dumbho[row,col],predho[row,col]) primalrls.solve(regparam) predho = primalrls.leave_one_out()[hoindices[0]] print(str(predho) + ' Fast LOO (primal)') print() hoindices = range(100, 300) hocompl = list(set(range(m)) - set(hoindices)) Kho = K[np.ix_(hocompl, hocompl)] Yho = Y[hocompl] testkm = K[np.ix_(hocompl, hoindices)] dumbho = np.dot( testkm.T, np.dot(la.inv(Kho + regparam * np.eye(Kho.shape[0])), Yho)) kwargs = {} kwargs['Y'] = Y kwargs['X'] = Xtrain dualrls.solve(regparam) predho2 = dualrls.holdout(hoindices2) print(str(predho2) + ' Fast HO') hopred = dualrls.leave_pair_out(np.array([hoindices2[0], 4, 6]), np.array([hoindices2[1], 5, 7])) print(str(hopred[0][0]) + '\n' + str(hopred[1][0]) + ' Fast LPO')