# e.g. 1000_60sec.pkl in_pkl = sys.argv[1] out_pkl = sys.argv[2] with open(in_pkl) as f: dat = pickle.load(f) X_train, X_valid, X_test = dat[0] sys.stderr.write("X_train shape = %s\n" % str(X_train.shape)) sys.stderr.write("X_valid shape = %s\n" % str(X_valid.shape)) sys.stderr.write("X_test shape = %s\n" % str(X_test.shape)) args = dict() args["seed"] = 0 args["batch_size"] = 16 args["learning_rate"] = 0.01 args["momentum"] = 0.9 args["num_epochs"] = 2000 args["X_train"] = X_train args["X_valid"] = X_valid args["X_test"] = X_test args["update_method"] = rmsprop args["out_pkl"] = out_pkl args["in_model"] = "../models/16mar_minimalist2_use_mean.model" args["config"] = "../configurations/19feb_testing_d_minimalist2.py" experiment.train(args)
out_pkl = sys.argv[2] with open(in_pkl) as f: dat = pickle.load(f) X_train, X_valid, X_test = dat[0] sys.stderr.write("X_train shape = %s\n" % str(X_train.shape)) sys.stderr.write("X_valid shape = %s\n" % str(X_valid.shape)) sys.stderr.write("X_test shape = %s\n" % str(X_test.shape)) args = dict() args["seed"] = 0 args["num_inputs"] = 1 args["batch_size"] = 64 args["learning_rate"] = 0.1 args["momentum"] = 0.9 args["num_epochs"] = 2000 args["X_train"] = X_train args["X_valid"] = X_valid args["X_test"] = X_test #args["adagrad"] = True #args["config"] = "basic_net.py" args["config"] = "basic_net_d3.py" model = experiment.train(args) sys.stderr.write("writing to file: %s\n" % (out_pkl)) with open(out_pkl, "wb") as f: pickle.dump(model, f, pickle.HIGHEST_PROTOCOL)
with open(in_pkl) as f: dat = pickle.load(f) X_train, X_valid, X_test = dat[0] sys.stderr.write("X_train shape = %s\n" % str(X_train.shape)) sys.stderr.write("X_valid shape = %s\n" % str(X_valid.shape)) sys.stderr.write("X_test shape = %s\n" % str(X_test.shape)) args = dict() args["num_inputs"] = 1 args["batch_size"] = 500 args["learning_rate"] = 0.01 args["momentum"] = 0.9 args["num_epochs"] = 2000 args["X_train"] = X_train args["X_valid"] = X_valid args["X_test"] = X_test #args["adagrad"] = True #args["config"] = "basic_net.py" args["config"] = "basic_net_200x3.py" model = experiment.train(args) sys.stderr.write( "writing to file: %s\n" % (out_pkl) ) with open(out_pkl, "wb") as f: pickle.dump(model, f, pickle.HIGHEST_PROTOCOL)
out_pkl = sys.argv[2] with open(in_pkl) as f: dat = pickle.load(f) X_train, X_valid, X_test = dat[0] sys.stderr.write("X_train shape = %s\n" % str(X_train.shape)) sys.stderr.write("X_valid shape = %s\n" % str(X_valid.shape)) sys.stderr.write("X_test shape = %s\n" % str(X_test.shape)) args = dict() args["seed"] = 0 args["batch_size"] = 128 args["learning_rate"] = 0.01 args["momentum"] = 0.9 args["num_epochs"] = 4000 args["X_train"] = X_train args["X_valid"] = X_valid args["X_test"] = X_test args["update_method"] = rmsprop args["out_pkl"] = out_pkl args["units"] = [1024, 1024] args["config"] = "../../configurations/19mar_variable.py" experiment.train(args) #sys.stderr.write( "writing to file: %s\n" % (out_pkl) ) #with open(out_pkl, "wb") as f: # pickle.dump(model, f, pickle.HIGHEST_PROTOCOL)