Пример #1
0
def _options_roads_neq( roadnet, road1, road2, length_attr ) :
    edge1, data1 = ROAD.obtain_edge( roadnet, road1, data_flag=True )
    u1,v1,_ = edge1 ; roadlen1 = data1.get( length_attr, np.inf )
    edge2, data2 = ROAD.obtain_edge( roadnet, road2, data_flag=True )
    u2,v2,_ = edge2 ; roadlen2 = data2.get( length_attr, np.inf )
    
    x = GLOBAL.x ; y = GLOBAL.y    
    cost_dict = {
                 '<-s' : x,
                 's->' : roadlen1 - x,
                 '->t' : y,
                 't<-' : roadlen2 - y
                 }
    
    options = []
    # paths through endpoints
    WAYP1 = [ ( 's->', v1 ) ]
    if not data1.get( 'oneway', False ) : WAYP1.append( ( '<-s', u1 ) )
    WAYP2 = [ ( '->t', u2 ) ]
    if not data2.get( 'oneway', False ) : WAYP2.append( ( 't<-', v2 ) )
    
    for s,u in WAYP1 :
        p = ROAD.roadify( roadnet, u, length_attr )
        for t,v in WAYP2 :
            q = ROAD.roadify( roadnet, v, length_attr )
            
            dst = ROAD.distance( roadnet, p, q, length_attr )
            cost = cost_dict[s] + dst + cost_dict[t]
            options.append( cost )
            
    return options
Пример #2
0
def _options_roads_eq_yleqx( roadnet, road, length_attr ) :
    edge, data = ROAD.obtain_edge( roadnet, road, data_flag=True )
    u,v,_ = edge ; roadlen = data.get( length_attr, np.inf )
    p = ROAD.roadify( roadnet, u, length_attr )
    q = ROAD.roadify( roadnet, v, length_attr )
    
    x = GLOBAL.x ; y = GLOBAL.y
    sojourn_cost = roadlen - x + ROAD.distance( roadnet, q, p, length_attr ) + y    # a path using the rest of the network 
    options = [ sojourn_cost ]
    if not data.get( 'oneway', False ) :
        options.append( x - y )
    return options
def measurenx_to_approxnx( roadnet, epsilon, length='length', weight1='weight1', weight2='weight2' ) :
    """
    input: a road network, with weights on its elements
    output:
    returns a graph summarizing the network optimization problem instance;
    roadnets are multi-digraph, where edge 'keys' are assumed to be unique,
    i.e., road names; and should be different from node labels too;
    """
    digraph = nx.DiGraph()
    #digraph.add_node('s')
    #digraph.add_node('t')
    SUPPLY = []
    DEMAND = []
    
    """ insert supply and demand of roads """
    for u,v, road, data in roadnet.edges_iter( keys=True, data=True ) :
        roadlen = float( data.get( length, 1 ) )   # float() just in case
        assert roadlen >= 0.
        
        """
        split the road into equal-length segments;
        create a node for each segment;
        record boundary points, and mass contained
        """
        N = int( np.ceil( roadlen / epsilon ) )
        eps = roadlen / N
        
        surplus = float( data.get( weight1, 0. ) ) - data.get( weight2, 0. )
        deficit = -surplus
        
        bd = np.linspace( 0, roadlen, N+1 )
        bd = [ roadmaps.RoadAddress( road, x ) for x in bd ]
        for i, boundary in enumerate( zip( bd[:-1], bd[1:] ) ) :
            if surplus > 0. :
                node = (road,i,'supply')
                digraph.add_node( node, boundary=boundary )
                digraph.add_edge( 's', node, flow=cvxpy.variable(), minflow=0., maxflow=surplus/N )
                SUPPLY.append( node )
            if deficit > 0. :
                node = (road,i,'demand')
                digraph.add_node( node, boundary=boundary )
                digraph.add_edge( node, 't', flow=cvxpy.variable(), minflow=0., maxflow=deficit/N )
                DEMAND.append( node )
    
    """ ...and nodes """
    for u, data in roadnet.nodes_iter( data=True ) :
        surplus = data.get( weight1, 0. ) - data.get( weight2, 0. )
        deficit = -surplus
        if surplus > 0. :
            boundary = [ roadmaps.roadify( roadnet, u, weight=length ) ]
            node = (u,'supply')
            digraph.add_node( node, boundary=boundary )
            digraph.add_edge( 's', node, flow=cvxpy.variable(), minflow=0., maxflow=surplus )
            SUPPLY.append( node )
        if deficit > 0. :
            boundary = [ roadmaps.roadify( roadnet, v, weight=length ) ]
            node = (u,'demand')
            digraph.add_node( node, boundary=boundary )
            digraph.add_edge( node, 't', flow=cvxpy.variable(), minflow=0., maxflow=deficit )
            DEMAND.append( node )
            
            
    """ generate bipartite graph b/w SUPPLY and DEMAND """
    for u, v in itertools.product( SUPPLY, DEMAND ) :
        bd_u = digraph.node[u]['boundary']
        bd_v = digraph.node[v]['boundary']
        options = [ pair for pair in itertools.product( bd_u, bd_v ) ]
        options = [ roadmaps.distance( roadnet, p, q, weight=length ) for p,q in options ]
        #options = [ np.inf ]
        w = min( options )
        W = max( options )
        
        flowvar = cvxpy.variable()
        digraph.add_edge( u, v, flow=flowvar, minflow=0., w=w, W=W, cost_lo = w * flowvar, cost_hi = W * flowvar )
        
    nxopt.attach_flownx_constraints( digraph )
    return digraph      # a flow network