Пример #1
0
def validate(loader, num_classes, device, net, criterion):
    num_samples = 0
    running_loss = 0

    metrics = Metrics(range(num_classes))

    net.eval()

    for images, masks, tiles in tqdm(loader, desc="Validate", unit="batch", ascii=True):
        images = images.to(device)
        masks = masks.to(device)

        assert images.size()[2:] == masks.size()[1:], "resolutions for images and masks are in sync"

        num_samples += int(images.size(0))

        outputs = net(images)

        assert outputs.size()[2:] == masks.size()[1:], "resolutions for predictions and masks are in sync"
        assert outputs.size()[1] == num_classes, "classes for predictions and dataset are in sync"

        loss = criterion(outputs, masks)

        running_loss += loss.item()

        for mask, output in zip(masks, outputs):
            metrics.add(mask, output)

    return {
        "loss": running_loss / num_samples,
        "miou": metrics.get_miou(),
        "fg_iou": metrics.get_fg_iou(),
        "mcc": metrics.get_mcc(),
    }
Пример #2
0
def train(loader, num_classes, device, net, optimizer, criterion):
    num_samples = 0
    running_loss = 0

    metrics = Metrics(range(num_classes))

    net.train()

    for images, masks, tiles in tqdm(loader,
                                     desc="Train",
                                     unit="batch",
                                     ascii=True):
        images = images.to(device)
        masks = masks.to(device)

        assert images.size()[2:] == masks.size(
        )[1:], "resolutions for images and masks are in sync"

        num_samples += int(images.size(0))

        optimizer.zero_grad()
        outputs = net(images)

        assert outputs.size()[2:] == masks.size(
        )[1:], "resolutions for predictions and masks are in sync"
        assert outputs.size(
        )[1] == num_classes, "classes for predictions and dataset are in sync"

        loss = criterion(outputs, masks)
        loss.backward()

        optimizer.step()

        running_loss += loss.item()

        for mask, output in zip(masks, outputs):
            prediction = output.detach()
            metrics.add(mask, prediction)

    assert num_samples > 0, "dataset contains training images and labels"

    return {
        "loss": running_loss / num_samples,
        "miou": metrics.get_miou(),
        "fg_iou": metrics.get_fg_iou(),
        "mcc": metrics.get_mcc(),
    }
Пример #3
0
def compare(masks, labels, tile, classes):

    x, y, z = list(map(str, tile))
    label = np.array(Image.open(os.path.join(labels, z, x,
                                             "{}.png".format(y))))
    mask = np.array(Image.open(os.path.join(masks, z, x, "{}.png".format(y))))

    assert label.shape == mask.shape
    assert len(label.shape) == 2 and len(classes) == 2  # Still binary centric

    metrics = Metrics(classes)
    metrics.add(torch.from_numpy(label), torch.from_numpy(mask), is_prob=False)
    fg_iou = metrics.get_fg_iou()

    fg_ratio = 100 * max(np.sum(mask != 0), np.sum(label != 0)) / mask.size
    dist = 0.0 if math.isnan(fg_iou) else 1.0 - fg_iou

    qod = 100 - (dist * (math.log(fg_ratio + 1.0) + np.finfo(float).eps) *
                 (100 / math.log(100)))
    qod = 0.0 if qod < 0.0 else qod  # Corner case prophilaxy

    return dist, fg_ratio, qod