Пример #1
0
    def sample(self):

        pos_arr = []
        quat_arr = []
        placed_objects = []

        if (len(self.mujoco_objects) > len(self.pos_list)):
            print("More objects than position given! breaking")
            raise RandomizationError("Cannot place all objects on the desk")
        index = -1
        for obj_mjcf in self.mujoco_objects:
            index += 1
            horizontal_radius = obj_mjcf.get_horizontal_radius()
            bottom_offset = obj_mjcf.get_bottom_offset()

            object_x = self.pos_list[index][0]
            object_y = self.pos_list[index][1]
            # objects cannot overlap
            location_valid = True
            obj_count = -1

            # There is no check for whether location is valid
            pos = (self.table_top_offset - bottom_offset +
                   np.array([object_x, object_y, 0]))
            placed_objects.append((object_x, object_y, horizontal_radius))
            # random z-rotation

            quat = [
                np.cos(self.pos_list[index][2] / 2), 0, 0,
                np.sin(self.pos_list[index][2] / 2)
            ]

            quat_arr.append(quat)
            pos_arr.append(pos)
        return pos_arr, quat_arr
Пример #2
0
    def sample(self):
        pos_arr = []
        quat_arr = []
        placed_objects = []

        for obj_name, obj_mjcf in self.mujoco_objects.items():
            horizontal_radius = obj_mjcf.get_horizontal_radius()
            bottom_offset = obj_mjcf.get_bottom_offset()
            success = False
            for i in range(5000):  # 1000 retries
                if obj_name.startswith("SquareNut"):
                    x_range = [
                        -self.table_size[0] / 2 + horizontal_radius,
                        -horizontal_radius,
                    ]
                    y_range = [horizontal_radius, self.table_size[0] / 2]
                else:
                    x_range = [
                        -self.table_size[0] / 2 + horizontal_radius,
                        -horizontal_radius,
                    ]
                    y_range = [-self.table_size[0] / 2, -horizontal_radius]
                object_x = self.sample_x(horizontal_radius, x_range=x_range)
                object_y = self.sample_y(horizontal_radius, y_range=y_range)
                object_z = self.sample_z(0.01)
                # objects cannot overlap
                location_valid = True
                pos = (self.table_top_offset - bottom_offset +
                       np.array([object_x, object_y, object_z]))

                for pos2, r in placed_objects:
                    if (np.linalg.norm(pos - pos2, 2) <= r + horizontal_radius
                            and abs(pos[2] - pos2[2]) < 0.021):
                        location_valid = False
                        break
                if location_valid:
                    # location is valid, put the object down
                    placed_objects.append((pos, horizontal_radius))
                    # random z-rotation

                    quat = self.sample_quat()

                    quat_arr.append(quat)
                    pos_arr.append(pos)
                    success = True
                    break

                # bad luck, reroll
            if not success:
                raise RandomizationError(
                    "Cannot place all objects on the desk")

        return pos_arr, quat_arr
Пример #3
0
    def place_objects_plus_fixed(self):
        """Places objects randomly until no collisions or max iterations hit. 
            and the object in use to a defined location
        """
        placed_objects = []
        index = 0

        # place objects by rejection sampling
        for _, obj_mjcf in self.mujoco_objects.items():
            horizontal_radius = obj_mjcf.get_horizontal_radius()
            bottom_offset = obj_mjcf.get_bottom_offset()
            success = False
            # Fixing position of defined object
            if index == self.obj_id:
                pos = self.obj_fixed_loc[0]
                placed_objects.append((pos, horizontal_radius))
                self.objects[index].set("pos", array_to_string(pos))
                quat = self.obj_fixed_loc[1]
                self.objects[index].set("quat", array_to_string(quat))
                success = True
                continue
            for _ in range(5000):  # 5000 retries
                bin_x_half = self.bin_size[0] / 2 - horizontal_radius - 0.05
                bin_y_half = self.bin_size[1] / 2 - horizontal_radius - 0.05
                object_x = np.random.uniform(high=bin_x_half, low=-bin_x_half)
                object_y = np.random.uniform(high=bin_y_half, low=-bin_y_half)

                # make sure objects do not overlap
                object_xy = np.array([object_x, object_y, 0])
                pos = self.bin_offset - bottom_offset + object_xy
                location_valid = True
                for pos2, r in placed_objects:
                    dist = np.linalg.norm(pos[:2] - pos2[:2], np.inf)
                    if dist <= r + horizontal_radius:
                        location_valid = False
                        break

                # place the object
                if location_valid:
                    # add object to the position
                    placed_objects.append((pos, horizontal_radius))
                    self.objects[index].set("pos", array_to_string(pos))
                    # random z-rotation
                    quat = self.sample_quat()
                    self.objects[index].set("quat", array_to_string(quat))
                    success = True
                    break

            # raise error if all objects cannot be placed after maximum retries
            if not success:
                raise RandomizationError("Cannot place all objects in the bins")
            index += 1
Пример #4
0
    def sample(self):
        pos_arr = []
        quat_arr = []
        placed_objects = []
        index = 0
        for i, obj_mjcf in enumerate(self.mujoco_objects):
            horizontal_radius = obj_mjcf.get_horizontal_radius()
            bottom_offset = obj_mjcf.get_bottom_offset()
            success = False
            for i in range(5000):  # 1000 retries
                object_x = self.sample_x(horizontal_radius, i)
                object_y = self.sample_y(horizontal_radius, i)
                # objects cannot overlap
                location_valid = True
                for x, y, r in placed_objects:
                    if (np.linalg.norm([object_x - x, object_y - y], 2) <=
                            r + horizontal_radius):
                        location_valid = False
                        break
                if location_valid:
                    # location is valid, put the object down
                    pos = (self.table_top_offset - bottom_offset +
                           np.array([object_x, object_y, 0]))
                    placed_objects.append(
                        (object_x, object_y, horizontal_radius))
                    # random z-rotation

                    quat = self.sample_quat()

                    quat_arr.append(quat)
                    pos_arr.append(pos)
                    success = True
                    break

                # bad luck, reroll
            if not success:
                raise RandomizationError(
                    "Cannot place all objects on the desk")
            index += 1
        return pos_arr, quat_arr
    def sample(self, fixtures=None, reference=None, on_top=True):
        """
        Uniformly sample relative to this sampler's reference_pos or @reference (if specified).

        Args:
            fixtures (dict): dictionary of current object placements in the scene as well as any other relevant
                obstacles that should not be in contact with newly sampled objects. Used to make sure newly
                generated placements are valid. Should be object names mapped to (pos, quat, MujocoObject)

            reference (str or 3-tuple or None): if provided, sample relative placement. Can either be a string, which
                corresponds to an existing object found in @fixtures, or a direct (x,y,z) value. If None, will sample
                relative to this sampler's `'reference_pos'` value.

            on_top (bool): if True, sample placement on top of the reference object. This corresponds to a sampled
                z-offset of the current sampled object's bottom_offset + the reference object's top_offset
                (if specified)

        Return:
            dict: dictionary of all object placements, mapping object_names to (pos, quat, obj), including the
                placements specified in @fixtures. Note quat is in (w,x,y,z) form

        Raises:
            RandomizationError: [Cannot place all objects]
            AssertionError: [Reference object name does not exist, invalid inputs]
        """
        # Standardize inputs
        placed_objects = {} if fixtures is None else copy(fixtures)
        if reference is None:
            base_offset = self.reference_pos
        elif type(reference) is str:
            assert reference in placed_objects, "Invalid reference received. Current options are: {}, requested: {}"\
                .format(placed_objects.keys(), reference)
            ref_pos, _, ref_obj = placed_objects[reference]
            base_offset = np.array(ref_pos)
            if on_top:
                base_offset += np.array((0, 0, ref_obj.top_offset[-1]))
        else:
            base_offset = np.array(reference)
            assert base_offset.shape[0] == 3, "Invalid reference received. Should be (x,y,z) 3-tuple, but got: {}"\
                .format(base_offset)

        # Sample pos and quat for all objects assigned to this sampler
        for obj in self.mujoco_objects:
            # First make sure the currently sampled object hasn't already been sampled
            assert obj.name not in placed_objects, "Object '{}' has already been sampled!".format(
                obj.name)

            horizontal_radius = obj.horizontal_radius
            bottom_offset = obj.bottom_offset
            success = False
            for i in range(5000):  # 5000 retries
                object_x = self._sample_x(horizontal_radius) + base_offset[0]
                object_y = self._sample_y(horizontal_radius) + base_offset[1]
                object_z = self.z_offset + base_offset[2]
                if on_top:
                    object_z -= bottom_offset[-1]

                # objects cannot overlap
                location_valid = True
                if self.ensure_valid_placement:
                    for (x, y, z), _, other_obj in placed_objects.values():
                        if (np.linalg.norm((object_x - x, object_y - y)) <=
                                other_obj.horizontal_radius + horizontal_radius
                            ) and (object_z - z <= other_obj.top_offset[-1] -
                                   bottom_offset[-1]):
                            location_valid = False
                            break

                if location_valid:
                    # random rotation
                    quat = self._sample_quat()

                    # multiply this quat by the object's initial rotation if it has the attribute specified
                    if hasattr(obj, "init_quat"):
                        quat = quat_multiply(quat, obj.init_quat)

                    # location is valid, put the object down
                    pos = (object_x, object_y, object_z)
                    placed_objects[obj.name] = (pos, quat, obj)
                    success = True
                    break

            if not success:
                raise RandomizationError("Cannot place all objects ):")

        return placed_objects
    def sample(self,
               fixtures=None,
               return_placements=False,
               reference_object_name=None,
               sample_on_top=False):
        """
        Uniformly sample on a surface (not necessarily table surface).

        Args:
            fixtures (dict): current dictionary of object placements in the scene. Used to make sure
                generated placements are valid.

            return_placements (bool): if True, return the updated dictionary
                of object placements.

            reference_object_name (str): if provided, sample placement relative to this object's
                placement (which must be provided in @fixtures).

            sample_on_top (bool): if True, sample placement on top of the reference object.

        Return:
            2-tuple or 3-tuple:

                - (list) list of placed object positions

                - (list) list of placed object quaternions

                - (dict) if @return_placements is True, returns a dictionary of all
                    object placements, including the ones placed by this sampler.

        Raises:
            RandomizationError: [Cannot place all objects]
            AssertionError: [Reference object name does not exist]
        """
        pos_arr = []
        quat_arr = []

        if fixtures is None:
            placed_objects = {}
        else:
            placed_objects = deepcopy(fixtures)

        # compute reference position
        base_offset = self.table_top_offset
        if reference_object_name is not None:
            assert reference_object_name in placed_objects
            reference_pos, reference_mjcf = placed_objects[
                reference_object_name]
            base_offset[:2] = reference_pos[:2]
            if sample_on_top:
                base_offset[-1] = reference_pos[
                    -1] + reference_mjcf.get_top_offset()[-1]  # set surface z

        index = 0
        for obj_name, obj_mjcf in self.mujoco_objects.items():
            horizontal_radius = obj_mjcf.get_horizontal_radius()
            bottom_offset = obj_mjcf.get_bottom_offset()
            success = False
            for i in range(5000):  # 5000 retries
                object_x = self.sample_x(horizontal_radius) + base_offset[0]
                object_y = self.sample_y(horizontal_radius) + base_offset[1]
                object_z = base_offset[2] + self.z_offset - bottom_offset[-1]

                # objects cannot overlap
                location_valid = True
                for (x, y, z), other_obj_mjcf in placed_objects.values():
                    if (np.linalg.norm([object_x - x, object_y - y], 2) <=
                            other_obj_mjcf.get_horizontal_radius() +
                            horizontal_radius) and (
                                object_z - z <=
                                other_obj_mjcf.get_top_offset()[-1] -
                                bottom_offset[-1]):
                        location_valid = False
                        break

                if location_valid:
                    # location is valid, put the object down
                    pos = (object_x, object_y, object_z)
                    placed_objects[obj_name] = (pos, obj_mjcf)

                    # random z-rotation
                    quat = self.sample_quat()

                    # multiply this quat by the object's initial rotation if it has the attribute specified
                    if hasattr(obj_mjcf, "init_quat"):
                        quat = quat_multiply(quat, obj_mjcf.init_quat)

                    quat_arr.append(quat)
                    pos_arr.append(pos)
                    success = True
                    break

            if not success:
                raise RandomizationError(
                    "Cannot place all objects on the desk")
            index += 1

        if return_placements:
            return pos_arr, quat_arr, placed_objects
        return pos_arr, quat_arr