def train_POMDP(self): args = self.args ROOT_DIR = os.path.dirname(os.path.dirname( os.path.abspath(__file__))) # corl2019 PARENT_DIR = os.path.dirname(ROOT_DIR) # reserach # Create the output directory if it does not exist output_dir = os.path.join(PARENT_DIR, 'multistep_pomdp', args.output_dir) if not os.path.isdir(output_dir): os.makedirs(output_dir) # write args to file with open(os.path.join(output_dir, 'args.txt'), 'w+') as f: json.dump(args.__dict__, f, indent=2) f.close() # Create our policy net and a target net self.policy_net_1 = DRQN(args.indim, args.outdim).to(args.device) self.policy_net_2 = DRQN(args.indim, args.outdim).to(args.device) self.policy_net_3 = DRQN(args.indim, args.outdim).to(args.device) # Set up the optimizer self.optimizer_1 = optim.RMSprop(self.policy_net_1.parameters()) self.optimizer_2 = optim.RMSprop(self.policy_net_2.parameters()) self.optimizer_3 = optim.RMSprop(self.policy_net_3.parameters()) self.memory = RecurrentMemory(800) self.steps_done = 0 # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs=args.indim, device=args.device) print_variables = {'durations': [], 'rewards': [], 'loss': []} start_episode = 0 if args.checkpoint_file: if os.path.exists(args.checkpoint_file): checkpoint = torch.load(args.checkpoint_file) self.policy_net_1.load_state_dict(checkpoint['policy_net_1']) self.policy_net_2.load_state_dict(checkpoint['policy_net_2']) self.policy_net_3.load_state_dict(checkpoint['policy_net_3']) self.optimizer_1.load_state_dict(checkpoint['optimizer_1']) self.optimizer_2.load_state_dict(checkpoint['optimizer_2']) self.optimizer_3.load_state_dict(checkpoint['optimizer_3']) start_episode = checkpoint['epochs'] self.steps_done = checkpoint['steps_done'] with open( os.path.join(os.path.dirname(args.checkpoint_file), 'results_pomdp.pkl'), 'rb') as file: plot_dict = pickle.load(file) print_variables['durations'] = plot_dict['durations'] print_variables['rewards'] = plot_dict['rewards'] if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) if args.memory: if os.path.exists(args.memory): self.memory.load(args.memory) action_space = ActionSpace(dp=0.06, df=10) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, self.break_threshold) # Main training loop for ii in range(start_episode, args.epochs): start_time = time.time() self.steps_done += 1 act_sequence = [] if args.sim: sim_params = init_model(robot.mj_sim) robot.reset_simulation() ret = robot.grasp_handle() if not ret: continue # Local memory for current episode localMemory = [] # Get current observation hidden_state_1, cell_state_1 = self.policy_net_1.init_hidden_states( batch_size=1, device=args.device) hidden_state_2, cell_state_2 = self.policy_net_2.init_hidden_states( batch_size=1, device=args.device) hidden_state_3, cell_state_3 = self.policy_net_3.init_hidden_states( batch_size=1, device=args.device) observation_space = TactileObs( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 7 broken_so_far = 0 for t in count(): if not args.quiet and t % 50 == 0: print("Running training episode: {}, iteration: {}".format( ii, t)) # Select action observation = observation_space.get_state() if args.position: observation = observation[6:] if args.shear: indices = np.ones(len(observation), dtype=bool) indices[6:166] = False observation = observation[indices] if args.force: observation = observation[:166] normalizer.observe(observation) observation = normalizer.normalize(observation) action, hidden_state_1, cell_state_1 = self.select_action( observation, hidden_state_1, cell_state_1) # record actions in this epoch act_sequence.append(action) # Perform action delta = action_space.get_action( self.ACTIONS[action])['delta'][:3] target_position = np.add(robot.get_gripper_jpos()[:3], np.array(delta)) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) if args.sim: robot.move_joint(target_pose, True, self.gripping_force, hap_sample=args.hap_sample) # Get reward done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: reward = num - broken_so_far broken_so_far = num else: reward = 0 # # Add a movement reward # reward -= 0.05 * np.linalg.norm(target_position - robot.get_gripper_jpos()[:3]) / np.linalg.norm(delta) # Observe new state observation_space.update( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30x7 # Set max number of iterations if t >= self.max_iter: done = True # Check if done if not done and not failure: next_state = observation_space.get_state() if args.position: next_state = next_state[6:] if args.shear: indices = np.ones(len(next_state), dtype=bool) indices[6:166] = False next_state = next_state[indices] if args.force: next_state = next_state[:166] normalizer.observe(next_state) next_state = normalizer.normalize(next_state) else: next_state = None # Push new Transition into memory localMemory.append( Transition(observation, action, next_state, reward)) # Optimize the model if t % 10 == 0: loss = self.optimize_model() # if loss: # print_variables['loss'].append(loss.item()) # If we are done, reset the model if done or failure: self.memory.push(localMemory) if failure: print_variables['durations'].append(self.max_iter) else: print_variables['durations'].append(t) print_variables['rewards'].append(broken_so_far) plot_variables(self.figure, print_variables, "Training POMDP") print("Model parameters: {}".format(sim_params)) print("Actions in this epoch are: {}".format(act_sequence)) print("Epoch {} took {}s, total number broken: {}\n\n". format(ii, time.time() - start_time, broken_so_far)) break # Save checkpoints every vew iterations if ii % args.save_freq == 0: save_path = os.path.join( output_dir, 'checkpoint_model_' + str(ii) + '.pth') torch.save( { 'epochs': ii, 'steps_done': self.steps_done, 'policy_net_1': self.policy_net_1.state_dict(), 'policy_net_2': self.policy_net_2.state_dict(), 'policy_net_3': self.policy_net_3.state_dict(), 'optimizer_1': self.optimizer_1.state_dict(), 'optimizer_2': self.optimizer_2.state_dict(), 'optimizer_3': self.optimizer_3.state_dict(), }, save_path) self.memory.save_memory(os.path.join(output_dir, 'memory.pickle')) if args.savefig_path: now = dt.datetime.now() self.figure[0].savefig( args.savefig_path + '{}_{}_{}.png'.format(now.month, now.day, now.hour), format='png') print('Training done') plt.show() return print_variables
def main(args): if not os.path.isdir(args.result_dir): os.makedirs(args.result_dir) parent = os.path.dirname(os.path.abspath(__file__)) # load test xml files test_file = os.path.join(parent, 'tests/test_xmls/temp_1_{}.pickle'.format(args.case)) params = pickle.load(open(test_file, 'rb')) # params = params[:6] if args.shuffle: random.shuffle(params) num_test = len(params) print(' ++++++++++++++++++++++++++') print(' +++ Now running case {} +++'.format(args.case)) print(' ++++++++++++++++++++++++++\n\n') policy_net = DRQN(args.indim, args.outdim) policy_net.load_state_dict(torch.load(args.weight_path)['policy_net_1']) policy_net.eval() # load normalizer # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs = args.indim, device=args.device) if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) tactile_obs_space = TactileObs(robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 6 performance = {'time':[], 'success':[], 'num_broken':[], 'tendon_hist':[0,0,0,0,0], 'collision':[], 'action_hist': [0,0,0,0,0,0]} for i in range(num_test): velcro_params = params[i] geom, origin_offset, euler, radius = velcro_params print('\n\nTest {} Velcro parameters are: {}, {}, {}, {}'.format(i, geom, origin_offset, euler, radius)) change_sim(robot.mj_sim, geom, origin_offset, euler, radius) robot.reset_simulation() ret = robot.grasp_handle() performance = test_network(args, policy_net, normalizer, robot, tactile_obs_space, performance) print('Success: {}, time: {}, num_broken: {}, collision:{} '.format( performance['success'][-1], performance['time'][-1], performance['num_broken'][-1], performance['collision'][-1])) print('Finished opening velcro with haptics test \n') success = np.array(performance['success']) time = np.array(performance['time']) print('Successfully opened the velcro in: {}% of cases'.format(100 * np.sum(success) / len(performance['success']))) print('Average time to open: {}'.format(np.average(time[success>0]))) print('Action histogram for the test is: {}'.format(performance['action_hist'])) out_fname = 'case{}.txt'.format(args.case) with open(os.path.join(args.result_dir, out_fname), 'w+') as f: f.write('Time: {}\n'.format(performance['time'])) f.write('Success: {}\n'.format(performance['success'])) f.write('Successfully opened the velcro in: {}% of cases\n'.format(100 * np.sum(success) / len(performance['success']))) f.write('Average time to open: {}\n'.format(np.average(time[success>0]))) f.write('Num_broken: {}\n'.format(performance['num_broken'])) f.write('Tendon histogram: {}\n'.format(performance['tendon_hist'])) f.write('collision: {}\n'.format(performance['collision'])) # f.write('high_success: {} low_success: {} '.format(high_success, low_success)) f.close()
def train_POMDP(self): args = self.args ROOT_DIR = os.path.dirname(os.path.dirname( os.path.abspath(__file__))) # corl2019 PARENT_DIR = os.path.dirname(ROOT_DIR) # reserach # Create the output directory if it does not exist output_dir = os.path.join(PARENT_DIR, 'multistep_pomdp', args.output_dir) if not os.path.isdir(output_dir): os.makedirs(output_dir) # write args to file with open(os.path.join(output_dir, 'args.txt'), 'w+') as f: json.dump(args.__dict__, f, indent=2) f.close() # Create our policy net and a target net self.policy_net_1 = DRQN(args.ftdim, args.outdim).to(args.device) self.policy_net_2 = DRQN(args.ftdim, args.outdim).to(args.device) if args.position: self.tactile_net_1 = TactileNet(args.indim - 6, args.ftdim).to(args.device) self.tactile_net_2 = TactileNet(args.indim - 6, args.ftdim).to(args.device) elif args.force: self.tactile_net_1 = TactileNet(args.indim - 390, args.ftdim).to(args.device) self.tactile_net_2 = TactileNet(args.indim - 390, args.ftdim).to(args.device) else: self.tactile_net_1 = TactileNet(args.indim, args.ftdim).to(args.device) self.tactile_net_2 = TactileNet(args.indim, args.ftdim).to(args.device) # Set up the optimizer self.policy_optimizer_1 = optim.RMSprop(self.policy_net_1.parameters(), lr=args.lr) self.policy_optimizer_2 = optim.RMSprop(self.policy_net_2.parameters(), lr=args.lr) self.tactile_optimizer_1 = optim.RMSprop( self.tactile_net_1.parameters(), lr=args.lr) self.tactile_optimizer_2 = optim.RMSprop( self.tactile_net_2.parameters(), lr=args.lr) self.memory = RecurrentMemory(800) self.steps_done = 0 # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs=args.indim, device=args.device) print_variables = {'durations': [], 'rewards': [], 'loss': []} start_episode = 0 if args.weight_policy: if os.path.exists(args.weight_policy): checkpoint = torch.load(args.weight_policy) self.policy_net_1.load_state_dict(checkpoint['policy_net_1']) self.policy_net_2.load_state_dict(checkpoint['policy_net_2']) self.policy_optimizer_1.load_state_dict( checkpoint['policy_optimizer_1']) self.policy_optimizer_2.load_state_dict( checkpoint['policy_optimizer_2']) start_episode = checkpoint['epochs'] self.steps_done = checkpoint['steps_done'] with open( os.path.join(os.path.dirname(args.weight_policy), 'results_pomdp.pkl'), 'rb') as file: plot_dict = pickle.load(file) print_variables['durations'] = plot_dict['durations'] print_variables['rewards'] = plot_dict['rewards'] if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) if args.memory: if os.path.exists(args.memory): self.memory.load(args.memory) if args.weight_tactile: checkpoint = torch.load(args.weight_tactile) self.tactile_net_1.load_state_dict(checkpoint['tactile_net_1']) self.tactile_optimizer_1.load_state_dict( checkpoint['tactile_optimizer_1']) self.tactile_net_2.load_state_dict(checkpoint['tactile_net_2']) self.tactile_optimizer_2.load_state_dict( checkpoint['tactile_optimizer_2']) action_space = ActionSpace(dp=0.06, df=10) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, self.break_threshold) tactile_obs_space = TactileObs( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 6 # Main training loop for ii in range(start_episode, args.epochs): self.steps_done += 1 start_time = time.time() act_sequence = [] act_length = [] velcro_params = init_model(robot.mj_sim) robot.reset_simulation() ret = robot.grasp_handle() if not ret: continue # Local memory for current episode localMemory = [] # Get current observation hidden_state_1, cell_state_1 = self.policy_net_1.init_hidden_states( batch_size=1, device=args.device) hidden_state_2, cell_state_2 = self.policy_net_2.init_hidden_states( batch_size=1, device=args.device) broken_so_far = 0 # pick a random action initially action = random.randrange(0, 5) current_state = None next_state = None t = 0 while t < args.max_iter: if not args.quiet and t == 0: print("Running training episode: {}".format(ii, t)) if args.position: multistep_obs = np.empty((0, args.indim - 6)) elif args.force: multistep_obs = np.empty((0, args.indim - 390)) else: multistep_obs = np.empty((0, args.indim)) prev_action = action for k in range(args.len_ub): # Observe tactile features and stack them tactile_obs = tactile_obs_space.get_state() normalizer.observe(tactile_obs) tactile_obs = normalizer.normalize(tactile_obs) if args.position: tactile_obs = tactile_obs[6:] elif args.force: tactile_obs = tactile_obs[:6] multistep_obs = np.vstack((multistep_obs, tactile_obs)) # current jpos current_pos = robot.get_gripper_jpos()[:3] # Perform action delta = action_space.get_action( self.ACTIONS[action])['delta'][:3] target_position = np.add(robot.get_gripper_jpos()[:3], np.array(delta)) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) robot.move_joint(target_pose, True, self.gripping_force, hap_sample=args.hap_sample) # Observe new state tactile_obs_space.update( robot.get_gripper_xpos(), # 24 robot.get_all_touch_buffer(args.hap_sample)) # 30x6 displacement = la.norm(robot.get_gripper_jpos()[:3] - current_pos) if displacement / 0.06 < 0.7: break # input stiched multi-step tactile observation into tactile-net to generate tactile feature action, hidden_state_1, cell_state_1 = self.select_action( multistep_obs, hidden_state_1, cell_state_1) if t == 0: next_state = multistep_obs.copy() else: current_state = next_state.copy() next_state = multistep_obs.copy() # record actions in this epoch act_sequence.append(prev_action) act_length.append(k) # Get reward done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: reward = num - broken_so_far broken_so_far = num else: if failure: reward = -20 else: reward = 0 t += k + 1 # Set max number of iterations if t >= self.max_iter: done = True if done or failure: next_state = None # Push new Transition into memory if t > k + 1: localMemory.append( Transition(current_state, prev_action, next_state, reward)) # Optimize the model if self.steps_done % 10 == 0: self.optimize() # If we are done, reset the model if done or failure: self.memory.push(localMemory) if failure: print_variables['durations'].append(self.max_iter) else: print_variables['durations'].append(t) print_variables['rewards'].append(broken_so_far) plot_variables(self.figure, print_variables, "Training POMDP") print("Model parameters: {}".format(velcro_params)) print( "{} of Actions in this epoch are: {} \n Action length are: {}" .format(len(act_sequence), act_sequence, act_length)) print("Epoch {} took {}s, total number broken: {}\n\n". format(ii, time.time() - start_time, broken_so_far)) break # Save checkpoints every vew iterations if ii % args.save_freq == 0: save_path = os.path.join(output_dir, 'policy_' + str(ii) + '.pth') torch.save( { 'epochs': ii, 'steps_done': self.steps_done, 'policy_net_1': self.policy_net_1.state_dict(), 'policy_net_2': self.policy_net_2.state_dict(), 'policy_optimizer_1': self.policy_optimizer_1.state_dict(), 'policy_optimizer_2': self.policy_optimizer_2.state_dict(), }, save_path) save_path = os.path.join(output_dir, 'tactile_' + str(ii) + '.pth') torch.save( { 'tactile_net_1': self.tactile_net_1.state_dict(), 'tactile_net_2': self.tactile_net_2.state_dict(), 'tactile_optimizer_1': self.tactile_optimizer_1.state_dict(), 'tactile_optimizer_2': self.tactile_optimizer_2.state_dict(), }, save_path) write_results(os.path.join(output_dir, 'results_pomdp.pkl'), print_variables) self.memory.save_memory( os.path.join(output_dir, 'memory.pickle')) if args.savefig_path: now = dt.datetime.now() self.figure[0].savefig( args.savefig_path + '{}_{}_{}.png'.format(now.month, now.day, now.hour), format='png') print('Training done') plt.show() return print_variables