NUM_CLASSES = 1 else: NUM_CLASSES = 90 def __init__(self): super(TestConfig, self).__init__(type) return TestConfig() # Read sequentail Models or Gather all Models from models/ config = Config('od') if config.SEQ_MODELS: model_names = config.SEQ_MODELS else: model_names = get_model_list(MODELS_DIR) # Sequential testing for model_name in model_names: print("> testing model: {}".format(model_name)) # conditionals optimized = False single_class = False # Test Model if 'hands' in model_name or 'person' in model_name: single_class = True if 'deeplab' in model_name: config = create_test_config('dl', model_name, optimized, single_class) model = DeepLabModel(config).prepare_model(INPUT_TYPE) else: config = create_test_config('od', model_name, optimized, single_class)
if optimized: model_path=ROOT_DIR+'/models/{}/optimized_inference_graph.pb'.format(model) log_dir=ROOT_DIR+'/models/{}/log_opt/'.format(model) else: model_path=ROOT_DIR+'/models/{}/frozen_inference_graph.pb'.format(model) log_dir=ROOT_DIR+'/models/{}/log/'.format(model) with session.Session(graph=ops.Graph()) as sess: with gfile.FastGFile(model_path, "rb") as f: graph_def = graph_pb2.GraphDef() graph_def.ParseFromString(f.read()) importer.import_graph_def(graph_def) pb_visual_writer = summary.FileWriter(log_dir) pb_visual_writer.add_graph(sess.graph) print("> Model {} Imported. \nVisualize by running: \ tensorboard --logdir={}".format(model_path, log_dir)) # Gather all Model Names in models/ MODELS_DIR = os.path.join(ROOT_DIR,'models') models = get_model_list(MODELS_DIR) # Create Tensorboard readable tfevent files in models/{}/log for model in models: optimized=False create_tfevent_from_pb(model,optimized) # Check if there is an optimized graph model_dir = os.path.join(MODELS_DIR,model) optimized = check_if_optimized_model(model_dir) if optimized: create_tfevent_from_pb(model,optimized)