Пример #1
0
def chow(n, alpha=1, delta=0):
    """
    chow(n, alpha, delta):  chow matrix - a singular toeplitz
        lower hessenberg matrix.
        a = chow(n, alpha, delta) is a toeplitz lower hessenberg matrix
        a = h(alpha) + delta*eye, where h(i,j) = alpha^(i-j+1).
        h(alpha) has p = floor(n/2) zero eigenvalues, the rest being
        4*alpha*cos( k*pi/(n+2) )^2, k=1:n-p.
        defaults: alpha = 1, delta = 0.

        References:
        T.S. Chow, A class of Hessenberg matrices with known
           eigenvalues and inverses, SIAM Review, 11 (1969), pp. 391-395.
        G. Fairweather, On the eigenvalues and eigenvectors of a class of
           Hessenberg matrices, SIAM Review, 13 (1971), pp. 220-221.
    """
    a = toeplitz(alpha ** np.arange(1, n + 1),
                 np.hstack((alpha, 1, np.zeros(n - 2)))) + delta * np.eye(n)
    return a
Пример #2
0
def chow(n, alpha=1, delta=0):
    """
    chow(n, alpha, delta):  chow matrix - a singular toeplitz
        lower hessenberg matrix.
        a = chow(n, alpha, delta) is a toeplitz lower hessenberg matrix
        a = h(alpha) + delta*eye, where h(i,j) = alpha^(i-j+1).
        h(alpha) has p = floor(n/2) zero eigenvalues, the rest being
        4*alpha*cos( k*pi/(n+2) )^2, k=1:n-p.
        defaults: alpha = 1, delta = 0.

        References:
        T.S. Chow, A class of Hessenberg matrices with known
           eigenvalues and inverses, SIAM Review, 11 (1969), pp. 391-395.
        G. Fairweather, On the eigenvalues and eigenvectors of a class of
           Hessenberg matrices, SIAM Review, 13 (1971), pp. 220-221.
    """
    a = toeplitz(alpha ** np.arange(1, n + 1), \
                 np.r_[alpha, 1, np.zeros(n - 2)]) + delta * np.eye(n)
    return a
Пример #3
0
def prolate(n, w=0.25):
    """
    PROLATE   Prolate matrix - symmetric, ill-conditioned Toeplitz matrix.
          A = PROLATE(N, W) is the N-by-N prolate matrix with parameter W.
          It is a symmetric Toeplitz matrix.
          If 0 < W < 0.5 then
             - A is positive definite
             - the eigenvalues of A are distinct, lie in (0, 1), and
               tend to cluster around 0 and 1.
          W defaults to 0.25.

          Reference:
          J.M. Varah. The Prolate matrix. Linear Algebra and Appl.,
          187:269--278, 1993.
    """
    a = np.zeros(n)
    a[0] = 2 * w
    a[1:n] = np.sin(2 * np.pi * w * np.arange(1, n)) / (np.pi *
                                                        np.arange(1, n))
    t = toeplitz(a)

    return t
Пример #4
0
def prolate(n, w=0.25):
    """
    PROLATE   Prolate matrix - symmetric, ill-conditioned Toeplitz matrix.
          A = PROLATE(N, W) is the N-by-N prolate matrix with parameter W.
          It is a symmetric Toeplitz matrix.
          If 0 < W < 0.5 then
             - A is positive definite
             - the eigenvalues of A are distinct, lie in (0, 1), and
               tend to cluster around 0 and 1.
          W defaults to 0.25.

          Reference:
          J.M. Varah. The Prolate matrix. Linear Algebra and Appl.,
          187:269--278, 1993.
    """
    a = np.zeros(n)
    a[0] = 2 * w
    a[1:n] = np.sin(2 * np.pi * w * np.arange(1, n)) / \
             (np.pi * np.arange(1, n))

    t = toeplitz(a)

    return t