Пример #1
0
    def get_batch_stats(self):
        ori_centers = np.array(self.ori_centers)
        ori_heading_classes = np.array(self.ori_heading_classes)
        ori_heading_residuals = np.array(self.ori_heading_residuals)
        ori_size_classes = np.array(self.ori_size_classes)
        ori_size_residuals = np.array(self.ori_size_residuals)
        
        del_centers = np.array(self.del_centers)
        del_heading_classes = np.array(self.del_heading_classes)
        del_heading_residuals = np.array(self.del_heading_residuals)
        del_size_classes = np.array(self.del_size_classes)
        del_size_residuals = np.array(self.del_size_residuals)
        
        y_centers = np.array(self.y_centers)
        y_heading_classes = np.array(self.y_heading_classes)
        y_heading_residuals = np.array(self.y_heading_residuals)
        y_size_classes = np.array(self.y_size_classes)
        y_size_residuals = np.array(self.y_size_residuals)

        y_clses = np.array(self.y_clses)
        
        assert(ori_centers.shape == del_centers.shape == y_centers.shape)
        assert(ori_size_classes.shape == del_size_classes.shape)
        assert(len(ori_centers) == len(del_centers) == len(y_centers) == len(y_clses))

        iou3ds_ori, iou3ds_del = [], []
        for i in range(len(ori_centers)):
            ori_lwh = class2size(ori_size_classes[i], ori_size_residuals[i])
            ori_ry  = class2angle(ori_heading_classes[i], ori_heading_residuals[i], 12)
            ori_box3d = get_3d_box(ori_lwh, ori_ry, ori_centers[i])

            del_lwh = class2size(del_size_classes[i], del_size_residuals[i])
            del_ry  = class2angle(del_heading_classes[i], del_heading_residuals[i], 12)
            del_box3d = get_3d_box(del_lwh, del_ry, del_centers[i])

            y_lwh = class2size(y_size_classes[i], y_size_residuals[i])
            y_ry  = class2angle(y_heading_classes[i], y_heading_residuals[i], 12)
            y_box3d = get_3d_box(y_lwh, y_ry, y_centers[i])

            ori_iou3d, _ = box3d_iou(y_box3d, ori_box3d)
            del_iou3d, _ = box3d_iou(y_box3d, del_box3d)
            iou3ds_ori.append(ori_iou3d)
            iou3ds_del.append(del_iou3d)
        iou3ds_ori = np.array(iou3ds_ori)
        iou3ds_del = np.array(iou3ds_del)

        stats = {}
        for c in range(self.num_classes):
            is_curr_class = (y_clses == c)
            support = np.sum(is_curr_class)
            if support == 0: continue
            iou3ds_ori_curr_class = iou3ds_ori[is_curr_class,...]
            iou3ds_del_curr_class = iou3ds_del[is_curr_class,...]
            mean_iou3d_ori = np.mean(iou3ds_ori_curr_class)
            mean_iou3d_del = np.mean(iou3ds_del_curr_class)
            change_in_iou3d = mean_iou3d_del - mean_iou3d_ori
            stats[self.classes[c]] = (mean_iou3d_ori, mean_iou3d_del, change_in_iou3d, support)
        return stats
Пример #2
0
def evaluate_predictions(predictions, dataset, classes, test_dataset, test_classes):
    ps_list, _, segp_list, center_list, heading_cls_list, heading_res_list, size_cls_list, size_res_list, \
    rot_angle_list, score_list, cls_list, file_num_list, _, _ = predictions
    print('Number of PRED boxes: %d, Number of GT boxes: %d' % (len(segp_list), len(test_dataset)))

    # For detection evaluation
    pred_all = {}
    gt_all = {}
    ovthresh = 0.25

    # A) Get GT boxes
    # print('Constructing GT boxes...')
    for i in range(len(test_dataset)):
        img_id = test_dataset.idx_l[i]
        if img_id in gt_all: continue # All ready counted..
        gt_all[img_id] = []

        objects = dataset.get_label_objects(img_id)
        calib = dataset.get_calibration(img_id)
        for obj in objects:
            if obj.classname not in test_classes: continue
            box3d_pts_2d, box3d_pts_3d = compute_box_3d(obj, calib)
            box3d_pts_3d = calib.project_upright_depth_to_upright_camera(box3d_pts_3d)
            box3d_pts_3d_flipped = np.copy(box3d_pts_3d)
            box3d_pts_3d_flipped[0:4,:] = box3d_pts_3d[4:,:]
            box3d_pts_3d_flipped[4:,:] = box3d_pts_3d[0:4,:]
            gt_all[img_id].append((obj.classname, box3d_pts_3d_flipped))

    # B) Get PRED boxes
    # print('Constructing PRED boxes...')
    for i in range(len(ps_list)):
        img_id = file_num_list[i] 
        classname = classes[cls_list[i]]
        if classname not in test_classes: raise Exception('Not supposed to have class: %s' % classname)
        center = center_list[i].squeeze()
        rot_angle = rot_angle_list[i]

        # Get heading angle and size
        heading_angle = roi_seg_box3d_dataset.class2angle(heading_cls_list[i], heading_res_list[i], NUM_HEADING_BIN)
        box_size = roi_seg_box3d_dataset.class2size(size_cls_list[i], size_res_list[i]) 
        corners_3d_pred = roi_seg_box3d_dataset.get_3d_box(box_size, heading_angle, center)
        corners_3d_pred = rotate_pc_along_y(corners_3d_pred, -rot_angle)

        if img_id not in pred_all:
            pred_all[img_id] = []
        pred_all[img_id].append((classname, corners_3d_pred, score_list[i]))

    # Compute AP
    rec, prec, ap = eval_det(pred_all, gt_all, ovthresh)
    mean_ap = np.mean([ap[classname] for classname in ap])

    return rec, prec, ap, mean_ap
Пример #3
0
        if np.sum(np.abs(obj.box2d - box2d)) < 1e-3:
            target_obj = obj
            break
    assert (target_obj is not None)

    box3d = TEST_DATASET.get_center_view_box3d(i)
    ps = ps_list[i]
    segp = segp_list[i].squeeze()
    center = center_list[i].squeeze()
    ret = TEST_DATASET[i]
    rot_angle = ret[7]

    # Get heading angle and size
    print heading_cls_list[i], heading_res_list[i], size_cls_list[
        i], size_res_list[i]
    heading_angle = roi_seg_box3d_dataset.class2angle(heading_cls_list[i],
                                                      heading_res_list[i], 12)
    box_size = roi_seg_box3d_dataset.class2size(size_cls_list[i],
                                                size_res_list[i])
    corners_3d_pred = roi_seg_box3d_dataset.get_3d_box(box_size, heading_angle,
                                                       center)

    # NOTE: fix this, box3d (projected from upright_depth coord) has flipped ymin,ymax as that in corners_3d_pred
    box3d_new = np.copy(box3d)
    box3d_new[0:4, :] = box3d[4:, :]
    box3d_new[4:, :] = box3d[0:4, :]
    iou_3d, iou_2d = box3d_iou(corners_3d_pred, box3d_new)
    print corners_3d_pred
    print box3d_new
    print 'Ground/3D IoU: ', iou_2d, iou_3d
    correct = int(iou_3d >= 0.25)
    total_cnt += 1
Пример #4
0
def vis_predictions3D(pred_files, gt_file, number_to_show=10, filenums=None):
    
    from roi_seg_box3d_dataset import class2type
    
    idx = 0
    COLS = number_to_show
    ap_infos = {}
    classes, file_nums, mean_box_ious, mean_seg_ious, box_ious, seg_ious = [], [], [], [], [], []
    vtk_pcs_with_col, vtk_pcs_wo_col, vtk_imgs, vtk_gt_boxes, vtk_pred_boxes, vtk_texts = [], [], [], [], [], []
    choices = []

    test_dataset = ROISegBoxDataset(WHITE_LIST, npoints=2048, 
                                    split='val', rotate_to_center=True, 
                                    overwritten_data_path=gt_file, 
                                    from_rgb_detection=False)

    for n, pred_file in enumerate(pred_files):
        # Lists of different items from predictions
        predictions = load_zipped_pickle(pred_file)
        ps_l, seg_gt_l, seg_pred_l, center_l, heading_cls_l, heading_res_l, size_cls_l, size_res_l, rot_angle_l, \
            score_l, cls_type_l, file_num_l, box2d_l, box3d_l = predictions
        if n == 0:
            # Choosing equal number of objects per class to display
            cls_types = []
            options = {}
            for i, cls_type in enumerate(cls_type_l):
                if not class2type[cls_type] in WHITE_LIST: continue
                if options.get(cls_type) is None:
                    options[cls_type] = [i]
                    cls_types.append(cls_type)
                else:
                    options[cls_type].append(i)

            # Make use of array_split to divide into fairly equal groups
            arr = np.array_split([1] * number_to_show, len(options.keys()))
            random.shuffle(arr)
            for i, group in enumerate(arr):
                cls_type = cls_types[i]
                choice_list = np.random.choice(options[cls_type], len(group), replace=False) #replace=True)
                choices.extend(choice_list)
            print('Number of objects in whitelist: %d' % len(options))

        # Compute overall statistics
        if not FLAGS.rgb_detection:
            print('==== Computing overall statistics for %s ====' % pred_file)
            from evaluate import evaluate_predictions, get_ap_info
            rec, prec, ap, mean_ap = evaluate_predictions(predictions, dataset, CLASSES, 
                                                          test_dataset, WHITE_LIST)
            ap['Mean AP'] = mean_ap
            for classname in ap.keys():
                if ap_infos.get(classname) is None: ap_infos[classname] = []
                ap_infos[classname].append('%11s: [%.1f]' % (classname, 100. * ap[classname]))

            box_iou_sum, seg_iou_sum = 0, 0
            for i in range(len(ps_l)):
                seg_gt = seg_gt_l[i]
                box3d = box3d_l[i]
                seg_pred = seg_pred_l[i]
                center = center_l[i]
                heading_cls = heading_cls_l[i]
                heading_res = heading_res_l[i]
                size_cls = size_cls_l[i]
                size_res = size_res_l[i]
                rot_angle = rot_angle_l[i]

                gt_box3d = rotate_pc_along_y(np.copy(box3d), rot_angle)
                heading_angle = class2angle(heading_cls, heading_res, NUM_HEADING_BIN)
                box_size = class2size(size_cls, size_res) 
                pred_box3d = get_3d_box(box_size, heading_angle, center)

                # Box IOU
                shift_arr = np.array([4,5,6,7,0,1,2,3])
                box_iou3d, _ = box3d_iou(gt_box3d[shift_arr,:], pred_box3d)
                # Seg IOU
                seg_iou = get_seg_iou(seg_gt, seg_pred, 2)

                box_iou_sum += box_iou3d
                seg_iou_sum += seg_iou
            mean_box_iou = box_iou_sum / len(ps_l)
            mean_seg_iou = seg_iou_sum / len(ps_l)
            mean_box_ious.append(mean_box_iou)
            mean_seg_ious.append(mean_seg_iou)
             
        for i in choices:
            row, col = idx // COLS, idx % COLS
            idx += 1
            ps = ps_l[i]
            seg_pred = seg_pred_l[i]
            center = center_l[i]
            heading_cls = heading_cls_l[i]
            heading_res = heading_res_l[i]
            size_cls = size_cls_l[i]
            size_res = size_res_l[i]
            rot_angle = rot_angle_l[i]
            score = score_l[i]
            cls_type = cls_type_l[i]
            file_num = file_num_l[i]
            seg_gt = seg_gt_l[i] if not FLAGS.rgb_detection else []
            box2d = box2d_l[i]
            box3d = box3d_l[i] if not FLAGS.rgb_detection else []

            # Visualize point cloud (with and without color)
            vtk_pc_wo_col = vis.VtkPointCloud(ps)
            vtk_pc = vis.VtkPointCloud(ps, gt_points=seg_gt, pred_points=seg_pred)
            vis.vtk_transform_actor(vtk_pc_wo_col.vtk_actor, translate=(SEP*col,SEP*row,0))
            vis.vtk_transform_actor(vtk_pc.vtk_actor, translate=(SEP*col,SEP*row,0))
            vtk_pcs_wo_col.append(vtk_pc_wo_col.vtk_actor)
            vtk_pcs_with_col.append(vtk_pc.vtk_actor)

            # Visualize GT 3D box
            if FLAGS.rgb_detection:
                objects = dataset.get_label_objects(file_num)
                calib = dataset.get_calibration(file_num)
                for obj in objects:
                    if obj.classname not in WHITE_LIST: continue
                    box3d_pts_2d, box3d_pts_3d = compute_box_3d(obj, calib)
                    box3d_pts_3d = calib.project_upright_depth_to_upright_camera(box3d_pts_3d)
                    box3d_pts_3d = rotate_pc_along_y(np.copy(box3d_pts_3d), rot_angle)
                    vtk_box3D = vis.vtk_box_3D(box3d_pts_3d, color=vis.Color.LightGreen)
                    vis.vtk_transform_actor(vtk_box3D, translate=(SEP*col,SEP*row,0))
                    vtk_gt_boxes.append(vtk_box3D)
            else:
                gt_box3d = rotate_pc_along_y(np.copy(box3d), rot_angle)
                vtk_gt_box3D = vis.vtk_box_3D(gt_box3d, color=vis.Color.LightGreen)
                vis.vtk_transform_actor(vtk_gt_box3D, translate=(SEP*col,SEP*row,0))
                vtk_gt_boxes.append(vtk_gt_box3D)

            # Visualize Pred 3D box
            heading_angle = class2angle(heading_cls, heading_res, NUM_HEADING_BIN)
            box_size = class2size(size_cls, size_res) 
            pred_box3d = get_3d_box(box_size, heading_angle, center)
            vtk_pred_box3D = vis.vtk_box_3D(pred_box3d, color=vis.Color.White)
            vis.vtk_transform_actor(vtk_pred_box3D, translate=(SEP*col,SEP*row,0))
            vtk_pred_boxes.append(vtk_pred_box3D)

            # Visualize Images
            box2d_col = vis.Color.LightGreen if not FLAGS.rgb_detection else vis.Color.Orange
            img_filename = os.path.join(IMG_DIR, '%06d.jpg' % file_num)
            vtk_img = vis.vtk_image(img_filename, box2Ds_list=[[box2d]], box2Ds_cols=[box2d_col])
            vis.vtk_transform_actor(vtk_img, scale=(IMG_SCALE,IMG_SCALE,IMG_SCALE), 
                                    rot=(0,180,180), translate=(-2+SEP*col,2+SEP*row,10))
            vtk_imgs.append(vtk_img)

            # Other information
            classes.append(class2type[cls_type].capitalize())
            file_nums.append(str(file_num))
            if not FLAGS.rgb_detection:
                shift_arr = np.array([4,5,6,7,0,1,2,3])
                box_iou3d, _ = box3d_iou(gt_box3d[shift_arr,:], pred_box3d)
                box_ious.append(box_iou3d)
                seg_iou = get_seg_iou(seg_gt, seg_pred, 2)
                seg_ious.append(seg_iou)

    # Visualize overall statistics
    vtk_texts.extend(vis.vtk_text([('Model: %s' % pred_file.split('/')[-1]) for pred_file in pred_files], arr_type='text', sep=SEP, cols=1, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-14.5,2.5,2)))
    vtk_texts.extend(vis.vtk_text(['Mean Box IOU:'] * len(pred_files), arr_type='text', sep=SEP, cols=1, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-14.5,3,2)))
    vtk_texts.extend(vis.vtk_text(mean_box_ious, arr_type='float', color=True, sep=SEP, cols=1, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-10,3,2)))
    vtk_texts.extend(vis.vtk_text(['Mean Seg IOU:'] * len(pred_files), arr_type='text', sep=SEP, cols=1, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-14.5,3.5,2)))
    vtk_texts.extend(vis.vtk_text(mean_seg_ious, arr_type='float', color=True, sep=SEP, cols=1, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-10,3.5,2)))
    for i, (cls_name, ap_info) in enumerate(ap_infos.items()):
        vtk_texts.extend(vis.vtk_text(ap_info, arr_type='text', color=True, sep=SEP, cols=1, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-14.5,4+i*0.5,2)))

    # Visualize text information
    vtk_texts.extend(vis.vtk_text(['Class:'] * len(classes), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,3,2)))
    vtk_texts.extend(vis.vtk_text(classes, arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0.5,3,2)))
    vtk_texts.extend(vis.vtk_text(['File:'] * len(file_nums), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,3.5,2)))
    vtk_texts.extend(vis.vtk_text(file_nums, arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0.25,3.5,2)))
    if not FLAGS.rgb_detection:
        vtk_texts.extend(vis.vtk_text(['Box:'] * len(box_ious), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,4,2)))
        vtk_texts.extend(vis.vtk_text(box_ious, arr_type='float', color=True, sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0,4,2)))
        vtk_texts.extend(vis.vtk_text(['Seg:'] * len(seg_ious), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,4.5,2)))
        vtk_texts.extend(vis.vtk_text(seg_ious, arr_type='float', color=True, sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0,4.5,2)))

    key_to_actors_to_hide = { 'g': vtk_gt_boxes, 'p': vtk_pred_boxes, 'i': vtk_imgs, 'c': vtk_pcs_wo_col, 't': vtk_texts }
    return vtk_pcs_with_col, key_to_actors_to_hide
Пример #5
0
def vis_box_pc_dataset(filename, number):
    boxpc_dataset = BoxPCFitDataset(classes=WHITE_LIST, 
                    center_perturbation=0.8, size_perturbation=0.2, angle_perturbation=np.pi,
                    npoints=2048, rotate_to_center=True, random_flip=True, random_shift=True, 
                    overwritten_data_path=filename)
    b_data, b_image, b_label, b_center, b_heading_class, b_heading_residual, b_size_class, \
    b_size_residual, b_box2d, b_rilts, b_ks, b_rot_angle, b_img_dims, b_one_hot_vec, \
    b_new_center, b_new_heading_class, b_new_heading_residual, b_new_size_class, \
    b_new_size_residual, b_box_iou, b_y_center_delta, b_y_size_delta, b_y_angle_delta = \
        boxpc_dataset.sample_batch(bsize=number, num_point=2048, num_channel=6, 
                                   proportion_of_boxpc_fit=0.5, 
                                   boxpc_nofit_bounds=[0.01,0.25], 
                                   boxpc_fit_bounds=[0.7,1.0], equal_samples_per_class=True)

    classes, box_ious = [], []
    vtk_pcs_with_col, vtk_gt_boxes, vtk_perb_boxes, vtk_imgs, vtk_pcs_wo_col, vtk_texts  = [], [], [], [], [], []
    for idx in range(len(b_data)):
        row, col = idx // COLS, idx % COLS
        cls_type = np.argmax(b_one_hot_vec[idx])
        point_set = b_data[idx]
        seg_gt = b_label[idx]
        iou3d = b_box_iou[idx]
        # GT 3D box
        center = b_center[idx]
        angle_class = b_heading_class[idx]
        angle_res = b_heading_residual[idx]
        size_cls = b_size_class[idx]
        size_res = b_size_residual[idx]
        # Perturbed 3D box
        new_center = b_new_center[idx]
        new_angle_class = b_new_heading_class[idx]
        new_angle_res = b_new_heading_residual[idx]
        new_size_cls = b_new_size_class[idx]
        new_size_res = b_new_size_residual[idx]

        # Visualize point cloud (with and without color)
        vtk_pc_wo_col = vis.VtkPointCloud(point_set)
        vtk_pc = vis.VtkPointCloud(point_set, gt_points=seg_gt)
        vis.vtk_transform_actor(vtk_pc_wo_col.vtk_actor, translate=(SEP*col,SEP*row,0))
        vis.vtk_transform_actor(vtk_pc.vtk_actor, translate=(SEP*col,SEP*row,0))
        vtk_pcs_wo_col.append(vtk_pc_wo_col.vtk_actor)
        vtk_pcs_with_col.append(vtk_pc.vtk_actor)

        # Visualize GT 3D box
        lwh = class2size(size_cls, size_res)
        ry  = class2angle(angle_class, angle_res, 12)
        gt_box3d = get_3d_box(lwh, ry, center)
        vtk_gt_box3D = vis.vtk_box_3D(gt_box3d, color=vis.Color.LightGreen)
        vis.vtk_transform_actor(vtk_gt_box3D, translate=(SEP*col,SEP*row,0))
        vtk_gt_boxes.append(vtk_gt_box3D)

        # Visualize Perb 3D box
        new_lwh = class2size(new_size_cls, new_size_res)
        new_ry  = class2angle(new_angle_class, new_angle_res, 12)
        perb_box3d = get_3d_box(new_lwh, new_ry, new_center)
        vtk_perb_box3D = vis.vtk_box_3D(perb_box3d, color=vis.Color.Blue)
        vis.vtk_transform_actor(vtk_perb_box3D, translate=(SEP*col,SEP*row,0))
        vtk_perb_boxes.append(vtk_perb_box3D)

        # Other information
        classes.append(class2type[cls_type].capitalize())
        box_iou3d, _ = box3d_iou(gt_box3d, perb_box3d)
        print('%d: %.3f, %.3f' % (idx, iou3d, box_iou3d - iou3d))
        box_ious.append(iou3d)

    # Visualize text information
    vtk_texts.extend(vis.vtk_text(['Class:'] * len(classes), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,3,2)))
    vtk_texts.extend(vis.vtk_text(classes, arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0.5,3,2)))
    vtk_texts.extend(vis.vtk_text(['Box:'] * len(box_ious), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,4,2)))
    vtk_texts.extend(vis.vtk_text(box_ious, arr_type='float', color=True, sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0,4,2)))

    key_to_actors_to_hide = { 'g': vtk_gt_boxes, 'p': vtk_perb_boxes, 'i': vtk_imgs, 'c': vtk_pcs_wo_col, 't': vtk_texts }

    return vtk_pcs_with_col, key_to_actors_to_hide
Пример #6
0
def vis_seg_box_dataset(filename, number):
    rotate_to_center = True
    segbox_dataset = ROISegBoxDataset(WHITE_LIST, npoints=2048, split='training', 
        rotate_to_center=rotate_to_center, random_flip=False, random_shift=False, 
        overwritten_data_path=filename, from_rgb_detection=FLAGS.rgb_detection)

    classes, file_nums = [], []
    vtk_pcs_wo_col, vtk_pcs_w_col, vtk_gt_boxes, vtk_imgs, vtk_texts = [], [], [], [], []
    #for idx in range(number):
    choices = np.random.choice(len(segbox_dataset), number)
    choices.sort()
    for idx, choice in enumerate(choices):
        row, col = idx // COLS, idx % COLS
        if FLAGS.rgb_detection:
            point_set, img, rot, prob = segbox_dataset[choice]
        else:
            point_set, img, seg_gt, center, angle_class, angle_res, size_cls, size_res, box2d, rtilt, \
                k, rot, img_dims = segbox_dataset[choice]
        file_num = segbox_dataset.idx_l[choice]

        # Visualize point cloud
        vtk_pc_wo_col = vis.VtkPointCloud(point_set)
        vtk_pc_w_col = vis.VtkPointCloud(point_set, gt_points=seg_gt)
        vis.vtk_transform_actor(vtk_pc_wo_col.vtk_actor, translate=(SEP*col,SEP*row,0))
        vis.vtk_transform_actor(vtk_pc_w_col.vtk_actor, translate=(SEP*col,SEP*row,0))
        vtk_pcs_wo_col.append(vtk_pc_wo_col.vtk_actor)
        vtk_pcs_w_col.append(vtk_pc_w_col.vtk_actor)

        # Visualize GT 3D box
        if not FLAGS.rgb_detection:
            lwh = class2size(size_cls, size_res)
            ry  = class2angle(angle_class, angle_res, 12)
            box3d = get_3d_box(lwh, ry, center)
            vtk_box3D = vis.vtk_box_3D(box3d, color=vis.Color.LightGreen)
            vis.vtk_transform_actor(vtk_box3D, translate=(SEP*col,SEP*row,0))
            vtk_gt_boxes.append(vtk_box3D)

            calib = dataset.get_calibration(file_num)
            box3d_rot = rotate_pc_along_y(box3d.copy(), -rot)
            box3d_pts_3d_orig = calib.project_upright_camera_to_upright_depth(box3d_rot)
            box3d_pts_2d, _ = calib.project_upright_depth_to_image(box3d_pts_3d_orig)

        # Visualize Images
        box2d = segbox_dataset.box2d_l[choice]
        box2d_col = vis.Color.LightGreen if not FLAGS.rgb_detection else vis.Color.Orange
        img_filename = os.path.join(IMG_DIR, '%06d.jpg' % file_num)
        vtk_img = vis.vtk_image(img_filename, 
                                box2Ds_list=[[box2d]], box2Ds_cols=[box2d_col],
                                proj_box3Ds_list=[box3d_pts_2d], 
                                proj_box3Ds_cols=[vis.Color.LightGreen])
        vis.vtk_transform_actor(vtk_img, scale=(IMG_SCALE,IMG_SCALE,IMG_SCALE), 
                                rot=(0,180,180), translate=(-2+SEP*col,2+SEP*row,10))
        vtk_imgs.append(vtk_img)

        # Text information
        classes.append(segbox_dataset.cls_type_l[choice])
        file_nums.append(str(file_num))

    # Visualize text information
    vtk_texts.extend(vis.vtk_text(['Class:'] * len(classes), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,3,2)))
    vtk_texts.extend(vis.vtk_text(classes, arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0.5,3,2)))
    vtk_texts.extend(vis.vtk_text(['File:'] * len(file_nums), arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(-1.5,3.5,2)))
    vtk_texts.extend(vis.vtk_text(file_nums, arr_type='text', sep=SEP, cols=COLS, scale=TEXT_SCALE, rot=TEXT_ROT, translate=(0.25,3.5,2)))

    return vtk_pcs_w_col, { 'g': vtk_gt_boxes, 'c': vtk_pcs_wo_col, 'i': vtk_imgs, 't': vtk_texts }
Пример #7
0
    for obj in objects: # **Assuming we use GT box2d for 3D box estimation evaluation**
        if np.sum(np.abs(obj.box2d-box2d))<1e-3:
            target_obj = obj
            break
    assert(target_obj is not None)

    box3d = TEST_DATASET.get_center_view_box3d(i)
    ps = ps_list[i]
    segp = segp_list[i].squeeze()
    center = center_list[i].squeeze()
    ret = TEST_DATASET[i]
    rot_angle = ret[7]

    # Get heading angle and size
    print heading_cls_list[i], heading_res_list[i], size_cls_list[i], size_res_list[i]
    heading_angle = roi_seg_box3d_dataset.class2angle(heading_cls_list[i], heading_res_list[i], 12)
    box_size = roi_seg_box3d_dataset.class2size(size_cls_list[i], size_res_list[i]) 
    corners_3d_pred = roi_seg_box3d_dataset.get_3d_box(box_size, heading_angle, center)

    # NOTE: fix this, box3d (projected from upright_depth coord) has flipped ymin,ymax as that in corners_3d_pred
    box3d_new = np.copy(box3d)
    box3d_new[0:4,:] = box3d[4:,:]
    box3d_new[4:,:] = box3d[0:4,:]
    iou_3d, iou_2d = box3d_iou(corners_3d_pred, box3d_new)
    print corners_3d_pred
    print box3d_new
    print 'Ground/3D IoU: ', iou_2d, iou_3d
    correct = int(iou_3d >= 0.25)
    total_cnt += 1
    correct_cnt += correct
    class_total_cnt[classname] += 1
Пример #8
0
print 'Construct PRED boxes...'
for i in range(len(TEST_DATASET)):
    img_id = TEST_DATASET.id_list[i]
    classname = TEST_DATASET.type_list[i]

    center = center_list[i].squeeze()
    ret = TEST_DATASET[i]
    if FLAGS.from_rgb_detection:
        rot_angle = ret[1]
    else:
        rot_angle = ret[7]

    # Get heading angle and size
    #print heading_cls_list[i], heading_res_list[i], size_cls_list[i], size_res_list[i]
    heading_angle = roi_seg_box3d_dataset.class2angle(heading_cls_list[i],
                                                      heading_res_list[i],
                                                      NUM_HEADING_BIN)
    box_size = roi_seg_box3d_dataset.class2size(size_cls_list[i],
                                                size_res_list[i])
    corners_3d_pred = roi_seg_box3d_dataset.get_3d_box(box_size, heading_angle,
                                                       center)
    corners_3d_pred = rotate_pc_along_y(corners_3d_pred, -rot_angle)

    if img_id not in pred_all:
        pred_all[img_id] = []
    pred_all[img_id].append((classname, corners_3d_pred, score_list[i]))
print pred_all[1]
raw_input()

import matplotlib.pyplot as plt
import matplotlib as mpl
Пример #9
0
# Get PRED boxes
print 'Construct PRED boxes...'
for i in range(len(TEST_DATASET)):
    img_id = TEST_DATASET.id_list[i] 
    classname = TEST_DATASET.type_list[i]

    center = center_list[i].squeeze()
    ret = TEST_DATASET[i]
    if FLAGS.from_rgb_detection:
        rot_angle = ret[1]
    else:
        rot_angle = ret[7]

    # Get heading angle and size
    #print heading_cls_list[i], heading_res_list[i], size_cls_list[i], size_res_list[i]
    heading_angle = roi_seg_box3d_dataset.class2angle(heading_cls_list[i], heading_res_list[i], NUM_HEADING_BIN)
    box_size = roi_seg_box3d_dataset.class2size(size_cls_list[i], size_res_list[i]) 
    corners_3d_pred = roi_seg_box3d_dataset.get_3d_box(box_size, heading_angle, center)
    corners_3d_pred = rotate_pc_along_y(corners_3d_pred, -rot_angle)

    if img_id not in pred_all:
        pred_all[img_id] = []
    pred_all[img_id].append((classname, corners_3d_pred, score_list[i]))
print pred_all[1]
raw_input()

import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rc('axes', linewidth=2)
print 'Computing AP...'
rec, prec, ap = eval_det(pred_all, gt_all, ovthresh)