Пример #1
0
def test_interpolator_bounds():
    with pytest.raises(ValueError):
        rq.Pipeline(
            rq.LowPass(window=10,
                       portion=2,
                       subsample_rate=1,
                       quantile=0.5,
                       alpha=2.0))
    with pytest.raises(ValueError):
        rq.Pipeline(
            rq.LowPass(window=10, portion=2, subsample_rate=1, quantile=2.5))
Пример #2
0
def test_median_array_input(window_size=71, length=1000):
    pipe = rq.Pipeline(rq.LowPass(window=window_size,
                                  portion=window_size // 2))
    x = example_input(length)
    y = pipe.feed(x)
    z = pd.Series(x).rolling(window_size).median()
    assert np.equal(y[window_size:], z.values[window_size:]).all(
    )  # exact equality, since no arithmetic is done on the numbers
Пример #3
0
def test_median_scalar_inputs(window_size=3,
                              length=100):  # no interpolation yet
    pipe = rq.Pipeline(rq.LowPass(window=window_size,
                                  portion=window_size // 2))
    v = example_input(length)
    for i, x in enumerate(v):
        y = pipe.feed(x)
        if i >= window_size:
            assert y == np.median(v[(i - window_size + 1):(i + 1)])
Пример #4
0
def test_basic_nans(window_size=5, length=20):
    # make sure the pipeline effectively flushes its contents with NaNs
    pipe = rq.Pipeline(rq.LowPass(window=window_size,
                                  portion=window_size // 2))
    x = example_input(length)
    y = pipe.feed(x)
    for i in range(window_size):
        pipe.feed(np.nan)
    z = pipe.feed(x)
    assert np.equal(y, z).all()
def test_fancy_interpolation(
    window_size=10,
    n_trials=200
):  # small windows may be more prone to boundary/edge-condition bugs
    for trial in range(n_trials):
        x = example_input(window_size)
        quantile = np.random.uniform()
        alpha, beta = np.random.uniform(size=2)
        pipe = rq.Pipeline(
            rq.LowPass(window=window_size,
                       quantile=quantile,
                       alpha=alpha,
                       beta=beta))
        y = pipe.feed(x)
        z = mquantiles(x, quantile, alphap=alpha, betap=beta)
        assert z == y[-1]
Пример #6
0
# illustration of what my hypothetical API should look like

import numpy as np
import rolling_quantiles as rq

filter = rq.Pipeline(  # stateful filter
    rq.LowPass(window=100, portion=50, subsample_rate=2),
    rq.HighPass(window=10, portion=3, subsample_rate=1))

# expose specialized pipelines like `rq.MedianFilter`

input = np.random.randn(1000)
output = filter.feed(
    input
)  # a single `ufunc` entry point that takes in arrays or scalars and spits out an appropriate amount of output
Пример #7
0
def measure_runtime(f):
    start = time.perf_counter()  # could also try time.monotonic()
    res = f()
    return time.perf_counter() - start, res


signal = np.cumsum(np.random.normal(size=100_000_000))
series = pd.Series(signal)  # construct a priori for fairness
window_sizes = np.array([4, 10, 20, 30, 40, 50]) + 1  # odd

rq_times, sc_times, pd_times = [], [], []

for window_size in window_sizes:
    pipe = rq.Pipeline(
        rq.LowPass(window=window_size,
                   portion=window_size // 2,
                   subsample_rate=1))
    rq_time, rq_res = measure_runtime(lambda: pipe.feed(signal))
    sc_time, sc_res = measure_runtime(lambda: medfilt(signal, window_size))
    pd_time, pd_res = measure_runtime(lambda: series.rolling(window_size).
                                      quantile(0.5, interpolation="nearest"))
    # rq_res and sc_res will differ slightly at the edges because medfilt pads both sides with zeros as if it were a convolution.
    # I pad at the beginning only, since I employ an online algorithm.
    offset = window_size // 2
    discrepancy = rq_res[1000:2000] - sc_res[(1000 - offset):(2000 - offset)]
    #print("maximum discrepancy between the two is", np.amax(np.abs(discrepancy)))
    assert np.amax(np.abs(discrepancy)) < 1e-10
    print("runtimes are", rq_time, "versus", sc_time, "versus", pd_time)
    rq_times.append(rq_time)
    sc_times.append(sc_time)
    pd_times.append(pd_time)
Пример #8
0
def test_window_size():
    with pytest.raises(ValueError):
        rq.Pipeline(rq.LowPass())
def test_innocuous_interpolation(window_size=1001, length=10000):
    pipe = rq.Pipeline(rq.LowPass(window=window_size, quantile=0.5))
    x = example_input(length)
    y = pipe.feed(x)
    z = pd.Series(x).rolling(window_size).median()
    assert np.equal(y[window_size:], z.values[window_size:]).all()
def test_typical_interpolation(window_size=40, quantile=0.2):
    x = example_input(window_size)  # one window only, due to scipy
    pipe = rq.Pipeline(rq.LowPass(window=window_size, quantile=quantile))
    y = pipe.feed(x)
    z = mquantiles(x, quantile, alphap=1, betap=1)
    assert z == y[-1]