def checkOnMC(unfolding, method): global bins, nbins RooUnfold.SVD_n_toy = 1000 pulls = [] for sub in range(1,9): inputFile2 = File('../data/unfolding_merged_sub%d.root' % sub, 'read') h_data = asrootpy(inputFile2.unfoldingAnalyserElectronChannel.measured.Rebin(nbins, 'measured', bins)) nEvents = inputFile2.EventFilter.EventCounter.GetBinContent(1) lumiweight = 164.5 * 5050 / nEvents # print sub, nEvents h_data.Scale(lumiweight) doUnfoldingSequence(unfolding, h_data, method, '_sub%d' %sub) pull = unfolding.pull_inputErrorOnly() # unfolding.printTable() pulls.append(pull) unfolding.Reset() allpulls = [] for pull in pulls: allpulls.extend(pull) h_allpulls = Hist(100,-30,30) filling = h_allpulls.Fill for entry in allpulls: filling(entry) fit = h_allpulls.Fit('gaus', 'WWS') h_fit = asrootpy(h_allpulls.GetFunction("gaus").GetHistogram()) canvas = Canvas(width=1600, height=1000) canvas.SetLeftMargin(0.15) canvas.SetBottomMargin(0.15) canvas.SetTopMargin(0.10) canvas.SetRightMargin(0.05) h_allpulls.Draw() fit.Draw('same') canvas.SaveAs('plots/Pull_allBins_withFit.png') plt.figure(figsize=(16, 10), dpi=100) rplt.errorbar(h_allpulls, label=r'Pull distribution for all bins', emptybins=False) rplt.hist(h_fit, label=r'fit') plt.xlabel('(unfolded-true)/error', CMS.x_axis_title) plt.ylabel('entries', CMS.y_axis_title) plt.title('Pull distribution for all bins', CMS.title) plt.tick_params(**CMS.axis_label_major) plt.tick_params(**CMS.axis_label_minor) plt.legend(numpoints=1) plt.savefig('plots/Pull_allBins.png') #individual bins for bin_i in range(nbins): h_pull = Hist(100,-30,30) for pull in pulls: h_pull.Fill(pull[bin_i]) plt.figure(figsize=(16, 10), dpi=100) rplt.errorbar(h_pull, label=r'Pull distribution for bin %d' % (bin_i + 1), emptybins=False) plt.xlabel('(unfolded-true)/error', CMS.x_axis_title) plt.ylabel('entries', CMS.y_axis_title) plt.title('Pull distribution for bin %d' % (bin_i + 1), CMS.title) plt.savefig('Pull_bin_%d.png' % (bin_i + 1))
def unfolding_toy_diagnostics(indir, variable): plotter = BasePlotter(defaults={ 'clone': False, 'name_canvas': True, 'show_title': True, 'save': { 'png': True, 'pdf': False } }, ) styles = { 'dots': { 'linestyle': 0, 'markerstyle': 21, 'markercolor': 1 }, 'compare': { 'linesstyle': [1, 0], 'markerstyle': [0, 21], 'markercolor': [2, 1], 'linecolor': [2, 1], 'drawstyle': ['hist', 'pe'], 'legendstyle': ['l', 'p'] } } xaxislabel = set_pretty_label(variable) true_distribution = None curdir = os.getcwd() os.chdir(indir) toydirs = get_immediate_subdirectories(".") methods = [] pulls_lists = {} pull_means_lists = {} pull_mean_errors_lists = {} pull_sums_lists = {} pull_sigmas_lists = {} pull_sigma_errors_lists = {} deltas_lists = {} delta_means_lists = {} delta_mean_errors_lists = {} delta_sigmas_lists = {} delta_sigma_errors_lists = {} ratio_sums_lists = {} nneg_bins_lists = {} unfoldeds_lists = {} unfolded_sigmas_lists = {} taus_lists = {} histos_created = False lists_created = False idir = 0 true_distro = None #loop over toys for directory in toydirs: if not directory.startswith('toy_'): continue os.chdir(directory) log.debug('Inspecting toy %s' % directory) idir = idir + 1 i = 0 if not os.path.isfile("result_unfolding.root"): raise ValueError('root file not found in %s' % os.getcwd()) with io.root_open("result_unfolding.root") as inputfile: log.debug('Iteration %s over the file' % i) i = i + 1 if not methods: keys = [i.name for i in inputfile.keys()] for key in keys: if hasattr(getattr(inputfile, key), "hdata_unfolded"): methods.append(key) unfolded_hists = [ inputfile.get('%s/hdata_unfolded' % i) for i in methods ] unfolded_wps_hists = [ inputfile.get('%s/hdata_unfolded_ps_corrected' % i) for i in methods ] for unf, unfps, method in zip(unfolded_hists, unfolded_wps_hists, methods): unf.name = method unfps.name = method if true_distro is None: true_distribution = inputfile.true_distribution ROOT.TH1.AddDirectory(False) true_distro = true_distribution.Clone() taus = prettyjson.loads(inputfile.best_taus.GetTitle()) if len(taus_lists) == 0: taus_lists = dict((i, []) for i in taus) for i, t in taus.iteritems(): taus_lists[i].append(t) for histo in unfolded_hists: #create pull/delta containers during first iteration name = histo.name nbins = histo.nbins() log.debug("name = %s, n bins = %s" % (name, nbins)) if not lists_created: for ibin in range(1, nbins + 1): outname = "pull_" + name + "_bin" + str(ibin) pulls_lists[outname] = [] outname = "delta_" + name + "_bin" + str(ibin) deltas_lists[outname] = [] outname = "unfolded_" + name + "_bin" + str(ibin) unfoldeds_lists[outname] = [] unfolded_sigmas_lists[outname] = [] outname = "pull_" + name pull_means_lists[outname] = {} pull_mean_errors_lists[outname] = {} pull_sigmas_lists[outname] = {} pull_sigma_errors_lists[outname] = {} outname = "delta_" + name delta_means_lists[outname] = {} delta_mean_errors_lists[outname] = {} delta_sigmas_lists[outname] = {} delta_sigma_errors_lists[outname] = {} for ibin in range(1, nbins + 1): outname = "pull_" + name + "_bin" + str(ibin) unfolded_bin_content = histo.GetBinContent(ibin) unfolded_bin_error = histo.GetBinError(ibin) true_bin_content = true_distro.GetBinContent(ibin) true_bin_error = true_distro.GetBinError(ibin) total_bin_error = math.sqrt(unfolded_bin_error**2) #??? if (total_bin_error != 0): pull = (unfolded_bin_content - true_bin_content) / total_bin_error else: pull = 9999 log.debug( 'unfolded bin content %s +/- %s, true bin content %s, pull %s' % (unfolded_bin_content, unfolded_bin_error, true_bin_content, pull)) pulls_lists[outname].append(pull) outname = "delta_" + name + "_bin" + str(ibin) delta = unfolded_bin_content - true_bin_content log.debug( 'unfolded bin content %s +/- %s, true bin content %s, delta %s' % (unfolded_bin_content, unfolded_bin_error, true_bin_content, delta)) deltas_lists[outname].append(delta) outname = "unfolded_" + name + "_bin" + str(ibin) unfoldeds_lists[outname].append(unfolded_bin_content) unfolded_sigmas_lists[outname].append(unfolded_bin_error) nneg_bins_hists = [ i for i in inputfile.keys() if i.GetName().startswith("nneg_bins") ] nneg_bins_hists = [asrootpy(i.ReadObj()) for i in nneg_bins_hists] for histo in nneg_bins_hists: #create pull/delta containers during first iteration name = histo.name nbins = histo.nbins() log.debug("name = %s, n bins = %s" % (name, nbins)) if not lists_created: outname = name nneg_bins_lists[outname] = [] outname = name nneg_bins_lists[outname].append(histo.GetBinContent(1)) pull_sums_hists = [ i for i in inputfile.keys() if i.GetName().startswith("sum_of_pulls") ] pull_sums_hists = [asrootpy(i.ReadObj()) for i in pull_sums_hists] for histo in pull_sums_hists: #create pull/delta containers during first iteration name = histo.name nbins = histo.nbins() log.debug("name = %s, n bins = %s" % (name, nbins)) if not lists_created: outname = name pull_sums_lists[outname] = [] outname = name pull_sums_lists[outname].append(histo.GetBinContent(1)) ratio_sums_hists = [ i for i in inputfile.keys() if i.GetName().startswith("sum_of_ratios") ] ratio_sums_hists = [ asrootpy(i.ReadObj()) for i in ratio_sums_hists ] for histo in ratio_sums_hists: #create ratio/delta containers during first iteration name = histo.name nbins = histo.nbins() log.debug("name = %s, n bins = %s" % (name, nbins)) if not lists_created: outname = name ratio_sums_lists[outname] = [] outname = name ratio_sums_lists[outname].append(histo.GetBinContent(1)) #after the first iteration on the file all the lists are created lists_created = True os.chdir("..") #create histograms #histo containers taus = {} for name, vals in taus_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0.8 * val_min if val_min > 0 else 1.2 * val_min val_max = max(vals) val_max = 0.8 * val_max if val_max < 0 else 1.2 * val_max if val_min == val_max: if tau_nbins % 2: #if odd val_min, val_max = val_min - 0.01, val_min + 0.01 else: brange = 0.02 bwidth = brange / tau_nbins val_min, val_max = val_min - 0.01 + bwidth / 2., val_min + 0.01 + bwidth / 2. title = '#tau choice - %s ;#tau;N_{toys}' % (name) histo = Hist(tau_nbins, val_min, val_max, name=name, title=title) for val in vals: histo.Fill(val) taus[name] = histo pulls = {} for name, vals in pulls_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0.8 * val_min if val_min > 0 else 1.2 * val_min val_max = max(vals) val_max = 0.8 * val_max if val_max < 0 else 1.2 * val_max abs_max = max(abs(val_min), abs(val_max)) if 'L_curve' in name: method = 'L_curve' binno = name.split('_')[-1] else: _, method, binno = tuple(name.split('_')) title = 'Pulls - %s - %s ;Pull;N_{toys}' % (binno, method) histo = Hist(pull_nbins, -abs_max, abs_max, name=name, title=title) for val in vals: histo.Fill(val) pulls[name] = histo deltas = {} for name, vals in deltas_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0.8 * val_min if val_min > 0 else 1.2 * val_min val_max = max(vals) val_max = 0.8 * val_max if val_max < 0 else 1.2 * val_max if 'L_curve' in name: method = 'L_curve' binno = name.split('_')[-1] else: _, method, binno = tuple(name.split('_')) title = 'Deltas - %s - %s ;Delta;N_{toys}' % (binno, method) histo = Hist(delta_nbins, val_min, val_max, name=name, title=title) for val in vals: histo.Fill(val) deltas[name] = histo unfoldeds = {} for name, vals in unfoldeds_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0.8 * val_min if val_min > 0 else 1.2 * val_min val_max = max(vals) val_max = 0.8 * val_max if val_max < 0 else 1.2 * val_max if 'L_curve' in name: method = 'L_curve' binno = name.split('_')[-1] else: _, method, binno = tuple(name.split('_')) title = 'Unfoldeds - %s - %s ;Unfolded;N_{toys}' % (binno, method) histo = Hist(unfolded_nbins, val_min, val_max, name=name, title=title) for val in vals: histo.Fill(val) unfoldeds[name] = histo nneg_bins = {} for name, vals, in nneg_bins_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0 if val_min > 0 else val_min - 1 val_max = max(vals) val_max = 0 if val_max < 0 else val_max + 1 if 'L_curve' in name: method = 'L_curve' else: set_trace() _, method, _ = tuple(name.split('_')) title = 'N of negative bins - %s ;N. neg bins;N_{toys}' % method histo = Hist(int(val_max - val_min + 1), val_min, val_max, name=name, title=title) for val in vals: histo.Fill(val) nneg_bins[name] = histo pull_sums = {} for name, vals in pull_sums_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0.8 * val_min if val_min > 0 else 1.2 * val_min val_max = max(vals) val_max = 0.8 * val_max if val_max < 0 else 1.2 * val_max if 'L_curve' in name: method = 'L_curve' else: set_trace() _, _, _, _, _, method = tuple(name.split('_')) title = 'Pull sums - %s ;#Sigma(pull)/N_{bins};N_{toys}' % method histo = Hist(unfolded_nbins, val_min, val_max, name=name, title=title) for val in vals: histo.Fill(val) pull_sums[name] = histo ratio_sums = {} for name, vals in ratio_sums_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0.8 * val_min if val_min > 0 else 1.2 * val_min val_max = max(vals) val_max = 0.8 * val_max if val_max < 0 else 1.2 * val_max if 'L_curve' in name: method = 'L_curve' binno = name.split('_')[-1] else: set_trace() _, _, _, _, _, method = tuple(name.split('_')) title = 'Ratio sums - %s;#Sigma(ratio)/N_{bins};N_{toys}' % method histo = Hist(unfolded_nbins, val_min, val_max, name=name, title=title) for val in vals: histo.Fill(val) ratio_sums[name] = histo unfolded_sigmas = {} for name, vals in unfolded_sigmas_lists.iteritems(): ROOT.TH1.AddDirectory(False) #repeat, you never know val_min = min(vals) val_min = 0.8 * val_min if val_min > 0 else 1.2 * val_min val_max = max(vals) val_max = 0.8 * val_max if val_max < 0 else 1.2 * val_max if 'L_curve' in name: method = 'L_curve' binno = name.split('_')[-1] else: _, method, binno = tuple(name.split('_')) title = 'Unfolded uncertainties - %s - %s ;Uncertainty;N_{toys}' % ( binno, method) histo = Hist(unfolded_nbins, val_min, val_max, name=name, title=title) for val in vals: histo.Fill(val) unfolded_sigmas[name] = histo for name, histo in pulls.iteritems(): log.debug("name is %s and object type is %s" % (name, type(histo))) histo.Fit("gaus", 'Q') if not histo.GetFunction("gaus"): log.warning("Function not found for histogram %s" % name) continue mean = histo.GetFunction("gaus").GetParameter(1) meanError = histo.GetFunction("gaus").GetParError(1) sigma = histo.GetFunction("gaus").GetParameter(2) sigmaError = histo.GetFunction("gaus").GetParError(2) general_name, idx = tuple(name.split('_bin')) idx = int(idx) pull_means_lists[general_name][idx] = mean pull_mean_errors_lists[general_name][idx] = meanError pull_sigmas_lists[general_name][idx] = sigma pull_sigma_errors_lists[general_name][idx] = sigmaError for name, histo in deltas.iteritems(): log.debug("name is %s and object type is %s" % (name, type(histo))) histo.Fit("gaus", 'Q') if not histo.GetFunction("gaus"): log.warning("Function not found for histogram %s" % name) continue mean = histo.GetFunction("gaus").GetParameter(1) meanError = histo.GetFunction("gaus").GetParError(1) sigma = histo.GetFunction("gaus").GetParameter(2) sigmaError = histo.GetFunction("gaus").GetParError(2) general_name, idx = tuple(name.split('_bin')) idx = int(idx) delta_means_lists[general_name][idx] = mean delta_mean_errors_lists[general_name][idx] = meanError delta_sigmas_lists[general_name][idx] = sigma delta_sigma_errors_lists[general_name][idx] = sigmaError outfile = rootpy.io.File("unfolding_diagnostics.root", "RECREATE") outfile.cd() pull_means = {} pull_sigmas = {} pull_means_summary = {} pull_sigmas_summary = {} delta_means = {} delta_sigmas = {} delta_means_summary = {} delta_sigmas_summary = {} for outname, pmeans in pull_means_lists.iteritems(): outname_mean = outname + "_mean" outtitle = "Pull means - " + outname + ";Pull mean; N_{toys}" pull_mean_min = min(pmeans.values()) pull_mean_max = max(pmeans.values()) pull_mean_newmin = pull_mean_min - (pull_mean_max - pull_mean_min) * 0.5 pull_mean_newmax = pull_mean_max + (pull_mean_max - pull_mean_min) * 0.5 pull_means[outname] = plotting.Hist(pull_mean_nbins, pull_mean_newmin, pull_mean_newmax, name=outname_mean, title=outtitle) outname_mean_summary = outname + "_mean_summary" outtitle_mean_summary = "Pull mean summary - " + outname histocloned = true_distro.Clone(outname_mean_summary) histocloned.Reset() histocloned.xaxis.title = xaxislabel histocloned.yaxis.title = 'Pull mean' histocloned.title = outtitle_mean_summary pull_means_summary[outname] = histocloned for idx, pmean in pmeans.iteritems(): pull_means[outname].Fill(pmean) histocloned[idx].value = pmean histocloned[idx].error = pull_mean_errors_lists[outname][idx] histocloned.yaxis.SetRangeUser(min(pmeans.values()), max(pmeans.values())) for outname, psigmas in pull_sigmas_lists.iteritems(): outname_sigma = outname + "_sigma" outtitle_sigma = "Pull #sigma's - " + outname + ";Pull #sigma; N_{toys}" pull_sigma_min = min(psigmas.values()) pull_sigma_max = max(psigmas.values()) pull_sigma_newmin = pull_sigma_min - (pull_sigma_max - pull_sigma_min) * 0.5 pull_sigma_newmax = pull_sigma_max + (pull_sigma_max - pull_sigma_min) * 0.5 pull_sigmas[outname] = plotting.Hist(pull_sigma_nbins, pull_sigma_newmin, pull_sigma_newmax, name=outname_sigma, title=outtitle_sigma) outname_sigma_summary = outname + "_sigma_summary" outtitle_sigma_summary = "Pull #sigma summary - " + outname histocloned = true_distro.Clone(outname_sigma_summary) histocloned.Reset() histocloned.xaxis.title = xaxislabel histocloned.yaxis.title = 'Pull #sigma' histocloned.title = outtitle_sigma_summary pull_sigmas_summary[outname] = histocloned for idx, psigma in psigmas.iteritems(): pull_sigmas[outname].Fill(psigma) histocloned[idx].value = psigma histocloned[idx].error = pull_sigma_errors_lists[outname][idx] histocloned.yaxis.SetRangeUser(min(psigmas.values()), max(psigmas.values())) for outname, dmeans in delta_means_lists.iteritems(): outname_mean = outname + "_mean" outtitle = "Delta means - " + outname + ";Delta mean; N_{toys}" delta_mean_min = min(dmeans.values()) delta_mean_max = max(dmeans.values()) delta_mean_newmin = delta_mean_min - (delta_mean_max - delta_mean_min) * 0.5 delta_mean_newmax = delta_mean_max + (delta_mean_max - delta_mean_min) * 0.5 delta_means[outname] = plotting.Hist(delta_mean_nbins, delta_mean_newmin, delta_mean_newmax, name=outname_mean, title=outtitle) outname_mean_summary = outname + "_mean_summary" outtitle_mean_summary = "Delta mean summary - " + outname histocloned = true_distro.Clone(outname_mean_summary) histocloned.Reset() histocloned.xaxis.title = xaxislabel histocloned.yaxis.title = 'Delta mean' histocloned.title = outtitle_mean_summary delta_means_summary[outname] = histocloned for idx, dmean in dmeans.iteritems(): delta_means[outname].Fill(dmean) histocloned[idx].value = dmean histocloned[idx].error = delta_mean_errors_lists[outname][idx] histocloned.yaxis.SetRangeUser(min(dmeans.values()), max(dmeans.values())) for outname, dsigmas in delta_sigmas_lists.iteritems(): outname_sigma = outname + "_sigma" outtitle_sigma = "Delta #sigma's - " + outname + ";Delta #sigma; N_{toys}" delta_sigma_min = min(dsigmas.values()) delta_sigma_max = max(dsigmas.values()) delta_sigma_newmin = delta_sigma_min - (delta_sigma_max - delta_sigma_min) * 0.5 delta_sigma_newmax = delta_sigma_max + (delta_sigma_max - delta_sigma_min) * 0.5 delta_sigmas[outname] = plotting.Hist(delta_sigma_nbins, delta_sigma_newmin, delta_sigma_newmax, name=outname_sigma, title=outtitle_sigma) outname_sigma_summary = outname + "_sigma_summary" outtitle_sigma_summary = "Delta #sigma summary - " + outname histocloned = true_distro.Clone(outname_sigma_summary) histocloned.Reset() histocloned.xaxis.title = xaxislabel histocloned.yaxis.title = 'Delta #sigma' histocloned.title = outtitle_sigma_summary delta_sigmas_summary[outname] = histocloned for idx, dsigma in dsigmas.iteritems(): delta_sigmas[outname].Fill(dsigma) histocloned[idx].value = dsigma histocloned[idx].error = delta_sigma_errors_lists[outname][idx] histocloned.yaxis.SetRangeUser(min(dsigmas.values()), max(dsigmas.values())) unfolded_summary = {} unfolded_average = {} unfolded_envelope = {} for name, histo in unfoldeds.iteritems(): log.debug("name is %s and object type is %s" % (name, type(histo))) histo.Fit("gaus", 'Q') if not histo.GetFunction("gaus"): log.warning("Function not found for histogram %s" % name) continue mean = histo.GetFunction("gaus").GetParameter(1) meanError = histo.GetFunction("gaus").GetParError(1) sigma = histo.GetFunction("gaus").GetParameter(2) sigmaError = histo.GetFunction("gaus").GetParError(2) general_name, idx = tuple(name.split('_bin')) idx = int(idx) if general_name not in unfolded_summary: histo = true_distro.Clone("%s_unfolded_summary" % general_name) outtitle_unfolded_summary = "Unfolded summary - " + general_name histo.Reset() histo.xaxis.title = xaxislabel histo.yaxis.title = 'N_{events}' histo.title = outtitle_unfolded_summary unfolded_summary[general_name] = histo unfolded_envelope[general_name] = histo.Clone( "%s_unfolded_envelope" % general_name) unfolded_average[general_name] = histo.Clone( "%s_unfolded_average" % general_name) unfolded_summary[general_name][idx].value = mean unfolded_summary[general_name][idx].error = meanError unfolded_envelope[general_name][idx].value = mean unfolded_envelope[general_name][idx].error = sigma unfolded_average[general_name][idx].value = mean unfolded_average[general_name][idx].error = \ unfolded_sigmas['%s_bin%i' % (general_name, idx)].GetMean() plotter.set_subdir('taus') for name, histo in taus.iteritems(): #canvas = plotter.create_and_write_canvas_single(0, 21, 1, False, False, histo, write=False) plotter.canvas.cd() histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) info = plotter.make_text_box( 'mode #tau = %.5f' % histo[histo.GetMaximumBin()].x.center, position=(plotter.pad.GetLeftMargin(), plotter.pad.GetTopMargin(), 0.3, 0.025)) info.Draw() plotter.save() histo.Write() plotter.canvas.Write() plotter.set_subdir('pulls') for name, histo in pulls.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() for name, histo in pull_means.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.Write() plotter.save() for name, histo in pull_sigmas.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.Write() plotter.save() plotter.set_subdir('pull_summaries') for name, histo in pull_means_summary.iteritems(): histo = plotter.plot(histo, **styles['dots']) #histo.SetStats(True) line = ROOT.TLine(histo.GetBinLowEdge(1), 0, histo.GetBinLowEdge(histo.GetNbinsX() + 1), 0) line.Draw("same") plotter.save() histo.Write() plotter.canvas.Write() for name, histo in pull_sigmas_summary.iteritems(): histo = plotter.plot(histo, **styles['dots']) #histo.SetStats(True) line = ROOT.TLine(histo.GetBinLowEdge(1), 1, histo.GetBinLowEdge(histo.GetNbinsX() + 1), 1) line.Draw("same") plotter.save() histo.Write() plotter.canvas.Write() plotter.set_subdir('deltas') for name, histo in deltas.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() for name, histo in delta_means.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.Write() plotter.save() for name, histo in delta_sigmas.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.Write() plotter.save() plotter.set_subdir('delta_summaries') for name, histo in delta_means_summary.iteritems(): histo = plotter.plot(histo, **styles['dots']) #histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() for name, histo in delta_sigmas_summary.iteritems(): histo = plotter.plot(histo, **styles['dots']) #histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() plotter.set_subdir('unfolding_unc') for name, histo in unfolded_sigmas.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() plotter.set_subdir('unfolded') for name, histo in unfoldeds.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() plotter.set_subdir('unfolded_summaries') for name, histo in unfolded_summary.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() for name, histo in unfolded_summary.iteritems(): leg = LegendDefinition("Unfolding comparison", 'NE', labels=['Truth', 'Unfolded']) plotter.overlay_and_compare([true_distro], histo, legend_def=leg, **styles['compare']) plotter.canvas.name = 'Pull_' + name plotter.save() plotter.canvas.Write() plotter.overlay_and_compare([true_distro], histo, legend_def=leg, method='ratio', **styles['compare']) plotter.canvas.name = 'Ratio_' + name plotter.save() plotter.canvas.Write() plotter.set_subdir('unfolded_average') for name, histo in unfolded_average.iteritems(): leg = LegendDefinition("Unfolding comparison", 'NE', labels=['Truth', 'Unfolded']) #set_trace() plotter.overlay_and_compare([true_distro], histo, legend_def=leg, **styles['compare']) plotter.canvas.name = 'Pull_' + name plotter.save() plotter.canvas.Write() plotter.overlay_and_compare([true_distro], histo, legend_def=leg, method='ratio', **styles['compare']) plotter.canvas.name = 'Ratio_' + name plotter.save() plotter.canvas.Write() plotter.set_subdir('unfolded_envelope') for name, histo in unfolded_envelope.iteritems(): leg = LegendDefinition("Unfolding comparison", 'NE', labels=['Truth', 'Unfolded']) plotter.overlay_and_compare([true_distro], histo, legend_def=leg, **styles['compare']) plotter.canvas.name = 'Pull_' + name plotter.save() plotter.canvas.Write() plotter.overlay_and_compare([true_distro], histo, legend_def=leg, method='ratio', **styles['compare']) plotter.canvas.name = 'Ratio_' + name plotter.save() plotter.canvas.Write() plotter.set_subdir('figures_of_merit') for name, histo in nneg_bins.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() for name, histo in pull_sums.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() for name, histo in ratio_sums.iteritems(): histo = plotter.plot(histo, **styles['dots']) histo.SetStats(True) plotter.save() histo.Write() plotter.canvas.Write() outfile.close() os.chdir(curdir)