def main(): file_name = 'datasets/rosalind_orf.txt' seq_dict = parse_fasta(file_name) for key in seq_dict: dna = seq_dict[key] orfs = orf_translate(dna) print('\n'.join(orfs)) with open('solutions/rosalind_orf.txt', 'w') as output_file: output_file.write('\n'.join(orfs))
def main(): file_name = 'datasets/rosalind_lcsm.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) shared_motif = longest_shared_motif(seq_list) print(shared_motif) with open('solutions/rosalind_lcsm.txt', 'w') as output_file: output_file.write(shared_motif)
def main(): file_name = 'datasets/rosalind_pmch.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) rna = seq_list[0] num_perfect_matching = perfect_matching(rna) print(str(num_perfect_matching)) with open('solutions/rosalind_pmch.txt', 'w') as output_file: output_file.write(str(num_perfect_matching))
def main(): file_name='datasets/rosalind_revp.txt' seq_dict = parse_fasta(file_name) for key in seq_dict: dna=seq_dict[key] restrict_sites, len_sites=restriction_sites(dna) for i in range(len(restrict_sites)): print(str(restrict_sites[i])+' '+str(len_sites[i])) with open('solutions/rosalind_revp.txt', 'w') as output_file: for i in range(len(restrict_sites)): output_file.write(str(restrict_sites[i])+' '+str(len_sites[i])+'\n')
def main(): file_name = 'datasets/rosalind_kmer.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) dna = seq_list[0] kmer_count = k_mer_sequence(dna) print(' '.join(map(str, (kmer_count)))) with open('solutions/rosalind_kmer.txt', 'w') as output_file: output_file.write(' '.join(map(str, (kmer_count))))
def main(): file_name = 'datasets/rosalind_long.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) final_sequence = shortest_super_sequence(seq_list) print(final_sequence) print(len(final_sequence)) with open('solutions/rosalind_long.txt', 'w') as output_file: output_file.write(final_sequence)
def main(): file_name = 'datasets/rosalind_sseq.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) dna = seq_list[0] motif = seq_list[1] splice_pos = spliced_motif(dna, motif) print(' '.join(map(str, (splice_pos)))) with open('solutions/rosalind_sseq.txt', 'w') as output_file: output_file.write(' '.join(map(str, (splice_pos))))
def main(): file_name = 'datasets/rosalind_edit.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) seq1 = seq_list[0] seq2 = seq_list[1] edit_distance_value = edit_distance(seq1, seq2) print(str(edit_distance_value)) with open('solutions/rosalind_edit.txt', 'w') as output_file: output_file.write(str(edit_distance_value))
def main(): file_name='datasets/rosalind_lcsq.txt' seq_dict = parse_fasta(file_name) seq_list=[] for key in seq_dict: seq_list.append(seq_dict[key]) seq1 = seq_list[0] seq2 = seq_list[1] lcs = shared_spliced_motif(seq1, seq2) print(lcs) with open('solutions/rosalind_lcsq.txt', 'w') as output_file: output_file.write(lcs)
def main(): file_name = 'datasets/rosalind_glob.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) seq1 = seq_list[0] seq2 = seq_list[1] indel_penalty = 5 scoring_matrix = BLOSUM62() max_score = global_alignment_score(seq1, seq2, scoring_matrix, indel_penalty) print(str(max_score)) with open('solutions/rosalind_glob.txt', 'w') as output_file: output_file.write(str(max_score))
def main(): file_name='datasets/rosalind_pdst.txt' seq_dict = parse_fasta(file_name) seq_list=[] for key in seq_dict: seq_list.append(seq_dict[key]) distance_plot=distance_matrix(seq_list) for i in range(len(distance_plot[0])): for j in range(len(distance_plot[0])): print(str(distance_plot[i][j])+' ') print() with open('solutions/rosalind_pdst.txt', 'w') as output_file: for i in range(len(distance_plot[0])): for j in range(len(distance_plot[0])): output_file.write(str(distance_plot[i][j])+' ') output_file.write('\n')
def main(): file_name = 'datasets/rosalind_oap.txt' seq_dict = parse_fasta(file_name) seq_list = [] for key in seq_dict: seq_list.append(seq_dict[key]) seq1 = seq_list[0] seq2 = seq_list[1] max_score, aligned_seq1, aligned_seq2 = overlap_alignment(seq1, seq2) print(str(max_score)) print(aligned_seq1) print(aligned_seq2) with open('solutions/rosalind_oap.txt', 'w') as output_data: output_data.write(str(max_score) + '\n') output_data.write(aligned_seq1 + '\n') output_data.write(aligned_seq2)
def main(): file_name = 'datasets/rosalind_cons.txt' seq_dict = parse_fasta(file_name) sequence_list = [] for key in seq_dict: sequence_list.append(seq_dict[key]) dict_cons, array_cons = consensus_profile(sequence_list) con_seq = consensus_sequence(array_cons) print(con_seq) for key in dict_cons: print(key + ': ' + ' '.join(map(str, (dict_cons[key])))) with open('solutions/rosalind_cons.txt', 'w') as output_file: output_file.write(con_seq + '\n') for key in dict_cons: output_file.write(key + ': ' + ' '.join(map(str, (dict_cons[key]))) + '\n')
def main(): file_name='datasets/rosalind_loca.txt' seq_dict = parse_fasta(file_name) seq_list=[] for key in seq_dict: seq_list.append(seq_dict[key]) seq1 = seq_list[0] seq2 = seq_list[1] indel_penalty = 5 scoring_matrix = PAM250() max_score, aligned_seq1, aligned_seq2 = local_alignment_subsequence(seq1, seq2, scoring_matrix, indel_penalty) print(str(max_score)) print(aligned_seq1) print(aligned_seq2) with open('solutions/rosalind_loca.txt', 'w') as output_data: output_data.write(str(max_score)+'\n') output_data.write(aligned_seq1+'\n') output_data.write(aligned_seq2)