ys_entire = np.sum(common_otu_entire[np.ix_(windows_entire_ids, otus_dn_cols)], axis=1) ys_entire_dn.append(ys_entire) trace = go.Box( y=ys_entire, name="W" + str(w_id + 1), boxpoints=box_points, marker_color=marker_color, line_color=line_color ) traces_entire_dn.append(trace) layout = go.Layout( margin=get_margin(), autosize=True, showlegend=False, xaxis=get_axis(''), yaxis=get_axis('Cumulated Abundance') ) fig = go.Figure(data=traces_t0_dp, layout=layout) plotly.offline.plot(fig, filename=out_path + '/cumulated_abundance_t0_diet_positive_box_plot.html', auto_open=False, show_link=True) plotly.io.write_image(fig, out_path + '/cumulated_abundance_t0_diet_positive_box_plot.png') plotly.io.write_image(fig, out_path + '/cumulated_abundance_t0_diet_positive_box_plot.pdf') fig = go.Figure(data=traces_t1_dp, layout=layout) plotly.offline.plot(fig, filename=out_path + '/cumulated_abundance_t1_diet_positive_box_plot.html', auto_open=False, show_link=True) plotly.io.write_image(fig, out_path + '/cumulated_abundance_t1_diet_positive_box_plot.png') plotly.io.write_image(fig, out_path + '/cumulated_abundance_t1_diet_positive_box_plot.pdf') fig = go.Figure(data=traces_entire_dp, layout=layout) plotly.offline.plot(fig, filename=out_path + '/cumulated_abundance_entire_diet_positive_box_plot.html', auto_open=False, show_link=True)
def pcoa_plot(path, ord_result, common_subjects, metrics_key, metrics_dict): coord_matrix = ord_result.samples.values.T xs_all = coord_matrix[0] ys_all = coord_matrix[1] zs_all = coord_matrix[2] traces_3d = [] traces_2d = [] for status in metrics_dict: curr_subjects = metrics_dict[status] xs = [] ys = [] zs = [] for subj in curr_subjects: index = common_subjects.index(subj) xs.append(xs_all[index]) ys.append(ys_all[index]) zs.append(zs_all[index]) color = cl.scales['8']['qual']['Set1'][list( metrics_dict.keys()).index(status)] coordinates = color[4:-1].split(',') color_transparent = 'rgba(' + ','.join(coordinates) + ',' + str( 0.3) + ')' color_border = 'rgba(' + ','.join(coordinates) + ',' + str(0.8) + ')' trace = go.Scatter3d(x=xs, y=ys, z=zs, name=status, mode='markers', marker=dict(size=8, color=color_border, line=dict(color=color_transparent, width=0.5), opacity=0.8)) traces_3d.append(trace) trace = go.Scatter(x=ys, y=xs, name=status, mode='markers', marker=dict(size=8, color=color_border, line=dict(color=color_transparent, width=0.5), opacity=0.8)) traces_2d.append(trace) layout_3d = go.Layout(margin=get_margin(), autosize=True, legend=get_legend()) layout_2d = go.Layout(margin=get_margin(), autosize=True, legend=get_legend(), xaxis=get_axis("PC1"), yaxis=get_axis("PC2")) fig_3d = go.Figure(data=traces_3d, layout=layout_3d) fig_3d.update_layout(scene=dict( xaxis=get_axis("PC1"), yaxis=get_axis("PC2"), zaxis=get_axis("PC3"))) fig_2d = go.Figure(data=traces_2d, layout=layout_2d) if not os.path.exists(path): os.makedirs(path) plotly.offline.plot(fig_3d, filename=path + '/pcoa_3d_' + metrics_key + '.html', auto_open=False, show_link=True) plotly.io.write_image(fig_3d, path + '/pcoa_3d_' + metrics_key + '.png') plotly.io.write_image(fig_3d, path + '/pcoa_3d_' + metrics_key + '.pdf') plotly.offline.plot(fig_2d, filename=path + '/pcoa_2d_' + metrics_key + '.html', auto_open=False, show_link=True) plotly.io.write_image(fig_2d, path + '/pcoa_2d_' + metrics_key + '.png') plotly.io.write_image(fig_2d, path + '/pcoa_2d_' + metrics_key + '.pdf')
['Reduced Frailty', 'No change in Frailty', 'Increased Frailty']): color = cl.scales['8']['qual']['Set1'][color_id] coordinates = color[4:-1].split(',') marker_color = 'rgba(' + ','.join(coordinates) + ',' + str(1.0) + ')' ys = [ frailty_changes_count['Subject'][fc_type], frailty_changes_count['Control'][fc_type], ] traces.append(go.Bar(x=xs, y=ys, name=fc_type, marker_color=marker_color)) layout = go.Layout(margin=get_margin(), autosize=True, showlegend=True, xaxis=get_axis(''), yaxis=get_axis('Number of subjects')) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, filename=out_path + '/frailty_changes_box_plot.html', auto_open=False, show_link=True) plotly.io.write_image(fig, out_path + '/frailty_changes_box_plot.png') plotly.io.write_image(fig, out_path + '/frailty_changes_box_plot.pdf') traces = [] xs = ['Intervention', 'Control'] for fc_type in ['Reduced Frailty', 'Increased Frailty']: if fc_type == 'Reduced Frailty':
ys.append(float(metadata_t0[code]['compliance160']) / 160.0 * 100.0 ) color = cl.scales['8']['qual']['Set1'][countries.index(country)] coordinates = color[4:-1].split(',') marker_color = 'rgba(' + ','.join(coordinates) + ',' + str(0.5) + ')' line_color = 'rgba(' + ','.join(coordinates) + ',' + str(1.0) + ')' trace = go.Box( y=ys, name=country, boxpoints='outliers', marker_color=marker_color, line_color=line_color ) traces.append(trace) layout = go.Layout( margin=get_margin(), autosize=True, showlegend=False, xaxis=get_axis(''), yaxis=get_axis('adherence') ) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, filename=out_path + '/adherence_t0_countries_box_plot.html', auto_open=False, show_link=True) plotly.io.write_image(fig, out_path + '/adherence_t0_countries_box_plot.png') plotly.io.write_image(fig, out_path + '/adherence_t0_countries_box_plot.pdf')
markers_orig_mse, markers_orig_corr = run_iterative_regressor( markers_orig_df, adherence[target_country], markers_orig, 'Markers original') non_markers_orig_mse, non_markers_orig_corr = run_iterative_regressor( non_markers_orig_df, adherence[target_country], non_markers_orig, 'Non-Markers original') traces = [] traces.append(go.Box(y=markers_orig_mse, name='Markers', boxpoints=box_points)) traces.append( go.Box(y=non_markers_orig_mse, name='Non-Markers', boxpoints=box_points)) layout = go.Layout(margin=get_margin(), autosize=True, showlegend=True, xaxis=get_axis(''), yaxis=get_axis('MSE across iterative models at Baseline')) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, filename=out_path + '/mse_original_boxplot_' + target_country + '.html', auto_open=False, show_link=True) plotly.io.write_image( fig, out_path + '/mse_original_boxplot_' + target_country + '.png') plotly.io.write_image( fig, out_path + '/mse_original_boxplot_' + target_country + '.pdf') traces = [] traces.append(go.Box(y=markers_orig_corr, name='Markers',
mse[country] = run_regressor(otu_df[country], adherence[country]) rmse[country] = np.sqrt(mse[country]) traces = [] for country in countries: ys = rmse[country] color = cl.scales['8']['qual']['Set1'][countries.index(country)] coordinates = color[4:-1].split(',') marker_color = 'rgba(' + ','.join(coordinates) + ',' + str(0.5) + ')' line_color = 'rgba(' + ','.join(coordinates) + ',' + str(1.0) + ')' traces.append(go.Box( y=ys, name=country, boxpoints=box_points )) layout = go.Layout( margin=get_margin(), autosize=True, showlegend=True, xaxis=get_axis(''), yaxis=get_axis('RMSE across countries at T0') ) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, filename=out_path + '/country_t0_box_plot.html', auto_open=False, show_link=True) plotly.io.write_image(fig, out_path + '/country_t0_box_plot.png') plotly.io.write_image(fig, out_path + '/country_t0_box_plot.pdf')
# plot bar plots x = ['Baseline', 'Final'] traces = [] for status in frailty_statuses: if status in obs_dict_t0['frailty_status']: y_t0 = len(obs_dict_t0['frailty_status'][status]) else: y_t0 = 0 ys = [y_t0, len(obs_dict_t1['frailty_status'][status])] traces.append(go.Bar(x=x, y=ys, name=status)) layout = go.Layout(margin=get_margin(), autosize=True, showlegend=True, xaxis=get_axis(''), yaxis=get_axis('Number of subjects')) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, filename=out_path + '/frailty_status_box_plot.html', auto_open=False, show_link=True) plotly.io.write_image(fig, out_path + '/frailty_status_box_plot.png') plotly.io.write_image(fig, out_path + '/frailty_status_box_plot.pdf') f = open(path + '/' + dr_otus_source + '/diet_positive.txt') otus_dp = f.read().splitlines() f.close() otus_dp_cols = np.array( [common_otu_col_dict[x] for x in otus_dp if x in common_otu_col_dict])