locs2 = locs[colours == 1] ### make an mtPP format object pp1 = PPP(locs1) pp2 = PPP(locs2) # pps = np.array([pp1]) pps = np.array([pp1,pp2]) mtppR = mtPPP(pps) mtppR.plot() #### est g function N = 10000 rho = 5 steps = np.linspace(0.0, 0.8, num=50)
plt.legend(bbox_to_anchor=(1, 0.8)) plt.show() ### make an mtPP format object pp1 = PPP(locs1) pp2 = PPP(locs2) pp3 = PPP(locs3) pps = np.array([pp1,pp2,pp3]) mtpp = mtPPP(pps) mtpp.plot() ### initialize other MCMC parameters size=1000 nInsDelMov = lam//10 n=5 K = mtpp.K
### thinp = 5/12 hickoryPP = PPP(hickory) hickoryPP.thin(thinp) maplePP = PPP(maple) maplePP.thin(thinp) mtpp = mtPPP(np.array([hickoryPP,maplePP])) mtpp.plot() ### mcmc K = mtpp.K lam_est = mtpp.nObs*(K+1)/K size=10000 nInsDelMov = lam_est//10
return(np.exp(-(0.25-np.sqrt((x[:,0]-0.5)**2+(x[:,1]-0.5)**2))**2/0.005)) pointpo = PPP.randomNonHomog(lam,fct) pointpo.plot() ### pointpo.loc=np.loadtxt("maple.csv", delimiter=",") # pointpo.loc=np.loadtxt("hickory.csv", delimiter=",") thinp=1/2 pointpo.thin(thinp) mtpp = mtPPP(np.array([pointpo])) mtpp.plot() ### initialize other MCMC parameters K = mtpp.K lam_est = mtpp.nObs*(K+1)/K size=10000 nInsDelMov = lam_est//10