import rrn_utils train_set = Dataset.load('./data/without_sol_one.pkl') test_set = Dataset.load('./data/with_sol_one.pkl') hyperparameters = { 'device': 6, 'dim_x': 2, 'dim_y': 2, 'num_iters': 32, 'train_size': 3000, 'valid_size': 500, 'batch_size': 500, 'epochs': 600, 'valid_epochs': 25, 'save_epochs': 25, 'embed_size': 6, 'hidden_layer_size': 32, 'learning_rate': 1e-3, 'weight_decay': 1e-4 } rrn_utils.train_rrn(hyperparameters, train_inputs = train_set.get_input_data(0, 3000), train_outputs = train_set.get_output_data(0, 3000), other_inputs = { 'validation': train_set.get_input_data(3000, 3500), 'test': test_set.get_input_data(0, 500)}, other_outputs = { 'validation': train_set.get_output_data(3000, 3500), 'test': test_set.get_output_data(0, 500)})
'device': 4, 'dim_x': 2, 'dim_y': 2, 'num_iters': 32, 'train_size': train_size_per_num_hints * 12, 'valid_size': valid_size_per_num_hints * 12, 'batch_size': 500, 'epochs': 600, 'save_epochs': 25, 'embed_size': 6, 'hidden_layer_size': 32, 'learning_rate': 1e-3, 'weight_decay': 1e-4 } dataset = Datasets.load('./data/datasets.pkl') split_inputs, split_outputs = dataset.split_data([ train_size_per_num_hints, train_size_per_num_hints + valid_size_per_num_hints ]) data = { 'train_inputs': split_inputs[0], 'train_outputs': split_outputs[0], 'valid_inputs': split_inputs[1], 'valid_outputs': split_outputs[1] } train_rrn(hyperparameters, data)
sys.path.append(SUDOKU_PATH + '/src/models') from dataset import Dataset from rrn_utils import train_rrn train_set = Dataset.load('./data/train_set.pkl') valid_set = Dataset.load('./data/valid_set.pkl') devices = [4, 5, 6, 7, 8, 9] print("Running on devices {}".format(devices)) hyperparameters = { 'devices': devices, 'dim_x': 3, 'dim_y': 3, 'num_iters': 32, 'batch_size': 32 * len(devices), 'epochs': 3, 'valid_epochs': 25, 'save_epochs': 25, 'embed_size': 16, 'hidden_layer_size': 96, 'learning_rate': 1e-4, 'weight_decay': 1e-4 } train_rrn(hyperparameters, train_inputs=train_set.keys()[:10000], train_outputs=train_set.values()[:10000], other_inputs={"validation": valid_set.keys()}, other_outputs={"validation": valid_set.values()})
hyperparameters = { 'device': 6, 'dim_x': 2, 'dim_y': 2, 'num_iters': 32, 'train_size': train_size_per_num_hints * 12, 'valid_size': valid_size_per_num_hints * 12, 'batch_size': 500, 'epochs': 600, 'valid_epochs': 25, 'save_epochs': 25, 'embed_size': 2, 'hidden_layer_size': 32, 'learning_rate': 1e-3, 'weight_decay': 1e-4 } dataset = Datasets.load('../../4x4_all_reimbed/data/datasets.pkl') split_inputs, split_outputs = dataset.split_data([ train_size_per_num_hints, train_size_per_num_hints + valid_size_per_num_hints ]) rrn_utils.train_rrn(hyperparameters, train_inputs=split_inputs[0], train_outputs=split_outputs[0], other_inputs={'validation': split_inputs[1]}, other_outputs={'validation': split_outputs[1]})
'batch_size': 400, 'epochs': 600, 'save_epochs': 25, 'embed_size': 6, 'hidden_layer_size': 32, 'learning_rate': 1e-3, 'weight_decay': 1e-4 } dataset = Datasets.load('./data/train_datasets.pkl') ext_valid_datasets = Datasets.load('./data/ext_valid_datasets.pkl') split_inputs, split_outputs = dataset.split_data([ train_size_per_num_hints, train_size_per_num_hints + valid_size_per_num_hints ]) extrapolation_inputs, extrapolation_outputs = ext_valid_datasets.split_data( [valid_size_per_num_hints]) train_rrn(hyperparameters, train_inputs=split_inputs[0], train_outputs=split_outputs[0], other_inputs={ "interpolation": split_inputs[1], "extrapolation": extrapolation_inputs[0] }, other_outputs={ "interpolation": split_outputs[1], "extrapolation": extrapolation_outputs[0] })