Пример #1
0
def analyzeStrategy(strategy_name, offStart, dtes, name, tkrs):
    timeAsFloat, timeLabels, maxM, dayOff, dayTimeAsFloat = rschLib.getTimeLabels(
        maxD)
    R = open_mtx[:, 1:] / close_mtx[:, :-1] - 1  #使用收盘到开盘的回报率来修正分红和拆股
    R = np.hstack((np.zeros((R.shape[0], 1)), R))
    tradesUsed, r_withnan = rschLib.getTradesFast(strategy_name, name, tkrs,
                                                  dtes, maxD, dayTimeAsFloat,
                                                  R)
    # get trade samples by good/bad trades
    tradeArea = [inTime, otTime]
    idxTradable = np.isfinite(r_withnan[:, tradeArea[0]])
    r = r_withnan.copy()
    r[np.isfinite(r) == False] = 0
    result = rschLib.getTradeAnalysisSampleGroups(r, idxTradable, tradeArea)

    # draw price change
    rschLib.drawPriceChange(r[idxTradable, :],
                            strategy_name,
                            timeLabels=timeLabels,
                            tp=tradeArea)
    rschLib.drawPriceChange(result['rGood10'],
                            strategy_name,
                            timeLabels=timeLabels,
                            title='盈利前10%交易',
                            tp=tradeArea)
    #rschLib.drawPriceChange(result['rGood20'], strategy_name, timeLabels=timeLabels, title='盈利前20%交易', tp=tradeArea)
    rschLib.drawPriceChange(result['rGood30'],
                            strategy_name,
                            timeLabels=timeLabels,
                            title='盈利前30%交易',
                            tp=tradeArea)
    rschLib.drawPriceChange(result['rBad10'],
                            strategy_name,
                            timeLabels=timeLabels,
                            title='亏损前10%交易',
                            tp=tradeArea)
    #rschLib.drawPriceChange(result['rBad20'], strategy_name, timeLabels=timeLabels, title='亏损前20%交易',  tp=tradeArea)
    rschLib.drawPriceChange(result['rBad30'],
                            strategy_name,
                            timeLabels=timeLabels,
                            title='亏损前30%交易',
                            tp=tradeArea)

    # analyze tags
    #rschLib.analyzeTradeTags(tradesUsed, result['rGood10'], result['idxGood10'], '盈利前10%交易',strategy_name, dtes, tkrs, offStart)
    #rschLib.analyzeTradeTags(tradesUsed, result['rGood20'], result['idxGood20'], '盈利前20%交易',strategy_name, dtes, tkrs, offStart)
    #rschLib.analyzeTradeTags(tradesUsed, result['rGood30'], result['idxGood30'], '盈利前30%交易',strategy_name, dtes, tkrs, offStart)
    #rschLib.analyzeTradeTags(tradesUsed, result['rBad10'], result['idxBad10'], '亏损前10%交易',strategy_name, dtes, tkrs, offStart)
    #rschLib.analyzeTradeTags(tradesUsed, result['rBad20'], result['idxBad20'], '亏损前20%交易',strategy_name, dtes, tkrs, offStart)
    #rschLib.analyzeTradeTags(tradesUsed, result['rBad30'], result['idxBad30'], '亏损前30%交易',strategy_name, dtes, tkrs, offStart)

    #get tag names
    tnames, tagNamesEn, t2 = rschLib.getTagNames()
    idxOverLapTagList = rschLib.analyzeTradeTags(tradesUsed, r,
                                                 list(range(len(tradesUsed))),
                                                 '所有交易', strategy_name, dtes,
                                                 tkrs, offStart,
                                                 "d:\\pklWeeklyUpdate\\")

    #draw pnl and tag pnl
    importlib.reload(rschLib)
    [dtesByTrade, pnlByTrade] = rschLib.getPnlFast(r,
                                                   dtes,
                                                   tkrs,
                                                   name,
                                                   tradesUsed,
                                                   inTime,
                                                   otTime,
                                                   dayOff,
                                                   timeAsFloat,
                                                   toDatabase='yes',
                                                   strategy_name=strategy_name)
    [dtesPnlAggr, pnlAggr,
     numTrades] = rschLib.aggregatePnlAndDtes(dtesByTrade, pnlByTrade)
    rschLib.drawPNL(dtesPnlAggr,
                    pnlAggr,
                    dtes,
                    strategy_name,
                    showFigure='no',
                    toDatabase='yes')
    for i in range(len(tnames)):
        tagName = tnames[i]
        [dtesWithTag, pnlWithTag,
         n] = rschLib.aggregatePnlAndDtes(dtesByTrade[idxOverLapTagList[i]],
                                          pnlByTrade[idxOverLapTagList[i]])
        rschLib.drawPNL(dtesWithTag,
                        pnlWithTag,
                        dtes,
                        strategy_name,
                        showFigure='no',
                        toDatabase='yes',
                        dateStart=dtesPnlAggr[0],
                        pnlType=tagName)
        rschLib.drawPNL(dtesWithTag,
                        pnlWithTag,
                        dtes,
                        strategy_name + '+' + tagNamesEn[i],
                        showFigure='no',
                        toDatabase='yes',
                        dateStart=dtesPnlAggr[0],
                        pnlType='pnl')

    #analysis of number of trades vs performance
    importlib.reload(rschLib)
    rschLib.pnlVsNumtrades(pnlAggr, numTrades, strategy_name, toDatabase='yes')
    rschLib.saveOffStart(strategy_name, offStart)
Пример #2
0
import matplotlib.dates as mdates
from scipy.spatial import ConvexHull, convex_hull_plot_2d
import talib
import importlib
import rschLib
np.set_printoptions(formatter={'float_kind': "{:.6f}".format})
dbt = rschLib.db_tinySoftData()
dtes, tkrs, name, open_mtx, high_mtx, low_mtx, close_mtx, belong, shenwan1, shenwan2, shenwan3, vol_mtx, amount_mtx = rschLib.loadDailyBarMtx(
)
# get time labels
timeAsFloat, timeLabels, maxM, dayOff, dayTimeAsFloat = rschLib.getTimeLabels(
    maxD)
# get trades
R = open_mtx[:, 1:] / close_mtx[:, :-1] - 1  #使用收盘到开盘的回报率来修正分红和拆股
R = np.hstack((np.zeros((R.shape[0], 1)), R))
tradesUsed, r_withnan = rschLib.getTradesFast(strategy_name, name, tkrs, dtes,
                                              maxD, dayTimeAsFloat, R)

# get trade samples by good/bad trades
tradeArea = [inTime, otTime]
r = r_withnan.copy()
r[np.isfinite(r) == False] = 0

# draw price change
idxTradable = np.isfinite(r_withnan[:, tradeArea[0]])
result = rschLib.getTradeAnalysisSampleGroups(r, idxTradable, tradeArea)
rschLib.drawPriceChange(r[idxTradable, :],
                        strategy_name,
                        timeLabels=timeLabels,
                        tp=tradeArea)
rschLib.drawPriceChange(result['rGood10'],
                        strategy_name,
Пример #3
0
client = pymongo.MongoClient('localhost', 27017)
db = client.quanLiang
dbt = client.tinySoftData
dtes, tkrs, name, open_mtx, high_mtx, low_mtx, close_mtx,belong, shenwan1, shenwan2, shenwan3, vol_mtx, amount_mtx = rschLib.loadDailyBarMtx()


# In[304]:


maxD = 5
inTime = 234
otTime = 474
tradeArea=[inTime,otTime]
timeAsFloat, timeLabels, maxM, dayOff, dayTimeAsFloat = rschLib.getTimeLabels(maxD)
importlib.reload(rschLib)
tradesUsed, Po, r, Sale1 = rschLib.getTradesFast(strategy_name, name, tkrs, dtes, maxD, dayTimeAsFloat)


# In[124]:


R = open_mtx[:, 1:]/close_mtx[:,:-1]-1
R = np.hstack((np.zeros((R.shape[0],1)), R))


# In[210]:


dicttkrs = dict(zip(tkrs, range(len(tkrs))))
dictdtes = dict(zip(dtes, range(len(dtes))))