Пример #1
0
    def performStage2TilesSegmentation(self, tilesImgDIR, tilesMaskedDIR, tilesSegsDIR, tilesSegBordersDIR, tmpDIR, tilesBase, s1BordersImage, segStatsInfo, minPxlsVal, distThresVal, bandsVal, ncpus):
        rsgisUtils = rsgislib.RSGISPyUtils()
        imgTiles = glob.glob(os.path.join(tilesImgDIR, tilesBase+"*.kea"))
        for imgTile in imgTiles:
            baseName = os.path.splitext(os.path.basename(imgTile))[0]        
            maskedFile = os.path.join(tilesMaskedDIR, baseName + '_masked.kea')
            dataType = rsgisUtils.getRSGISLibDataTypeFromImg(imgTile)
            imageutils.maskImage(imgTile, s1BordersImage, maskedFile, 'KEA', dataType, 0, 0)
            
        imgTiles = glob.glob(os.path.join(tilesMaskedDIR, tilesBase+"*_masked.kea"))
        def stage2threadedTiledImgSeg(imgTile):
                baseName = os.path.splitext(os.path.basename(imgTile))[0]        
                clumpsFile = os.path.join(tilesSegsDIR, baseName + '_segs.kea')
                kMeansCentres, imgStretchStats = self.findSegStatsFiles(imgTile, segStatsInfo)
                segutils.runShepherdSegmentationPreCalcdStats(imgTile, clumpsFile, kMeansCentres, imgStretchStats, outputMeanImg=None, tmpath=os.path.join(tmpDIR, baseName+'_segstemp'), gdalformat='KEA', noStats=False, noStretch=False, noDelete=False, minPxls=minPxlsVal, distThres=distThresVal, bands=bandsVal, processInMem=False)	
		
        p = Pool(ncpus)
        p.map(stage2threadedTiledImgSeg, imgTiles)
        
        segTiles = glob.glob(os.path.join(tilesSegsDIR, tilesBase+"*_segs.kea"))
        for segTile in segTiles:
            baseName = os.path.splitext(os.path.basename(segTile))[0]        
            borderMaskFile = os.path.join(tilesSegBordersDIR, baseName + '_segsborder.kea')
            rastergis.defineBorderClumps(segTile, 'BoundaryClumps')
            rastergis.exportCol2GDALImage(segTile, borderMaskFile, 'KEA', rsgislib.TYPE_8UINT, 'BoundaryClumps')
Пример #2
0
def calcWhiteness(image,
                  bBand,
                  gBand,
                  rBand,
                  outImage,
                  stats=True,
                  gdalformat='KEA'):
    """ 
Helper function to calculate whiteness, note the output no data value is -999.
    
Where:

:param image: is a string specifying the input image file.
:param bBand: is an int specifying the blue band in the input image (band indexing starts at 1)
:param gBand: is an int specifying the green band in the input image (band indexing starts at 1)
:param rBand: is an int specifying the red band in the input image (band indexing starts at 1)
:param outImage: is a string specifying the output image file.
:param stats: is a boolean specifying whether pyramids and stats should be calculated (Default: True)
:param gdalformat: is a string specifing the output image file format (Default: KEA)
    
"""
    expression = '(blue+green+red)!=0?(abs(blue-((blue+green+red)/3)) + abs(green-((blue+green+red)/3)) + abs(red-((blue+green+red)/3)))/((blue+green+red)/3):-999'
    bandDefns = []
    bandDefns.append(rsgislib.imagecalc.BandDefn('blue', image, bBand))
    bandDefns.append(rsgislib.imagecalc.BandDefn('green', image, gBand))
    bandDefns.append(rsgislib.imagecalc.BandDefn('red', image, rBand))
    rsgislib.imagecalc.bandMath(outImage, expression, gdalformat,
                                rsgislib.TYPE_32FLOAT, bandDefns)
    # Set no data value
    rsgislib.RSGISPyUtils().setImageNoDataValue(outImage, -999)
    if stats:
        rsgislib.imageutils.popImageStats(outImage, False, -999., True)
Пример #3
0
def sortImgsUTM2DIRs(inputImgsDIR, fileSearchStr, outBaseDIR):
    """
A function which will sort a series of input image files which
a projected using the UTM system into individual directories per
UTM zone. Please note that the input files are moved on your system!!

Where:

:param inputImgsDIR: directory where the input files are to be found.
:param fileSearchStr: the wildcard search string to find files within the input directory (e.g., \*.kea).
:param outBaseDIR: the output directory where the UTM folders will be created and the files copied.

"""
    rsgisUtils = rsgislib.RSGISPyUtils()
    inFiles = glob.glob(os.path.join(inputImgsDIR, fileSearchStr))
    for imgFile in inFiles:
        utmZone = rsgisUtils.getUTMZone(imgFile)
        if utmZone is not None:
            outDIR = os.path.join(outBaseDIR, 'utm' + utmZone)
            if not os.path.exists(outDIR):
                os.makedirs(outDIR)
            imgFileList = rsgisUtils.getImageFiles(imgFile)
            for tmpFile in imgFileList:
                print('Moving: ' + tmpFile)
                outFile = os.path.join(outDIR, os.path.basename(tmpFile))
                shutil.move(tmpFile, outFile)
Пример #4
0
def normalise_image_band(input_img, band, output_img, gdal_format='KEA'):
    """
    Perform a simple normalisation a single image band (val - min)/range.

    :param input_img: The input image file.
    :param band: the image band (starts at 1) to be normalised
    :param output_img: the output image file (will just be a single band).
    :param gdal_format: The output image format.

    """
    import rsgislib
    import rsgislib.imageutils
    rsgis_utils = rsgislib.RSGISPyUtils()
    no_data_val = rsgis_utils.getImageNoDataValue(input_img, band)
    use_no_data_val = True
    if no_data_val is None:
        use_no_data_val = False
        no_data_val = 0.0

    band_min, band_max = rsgislib.imagecalc.getImageBandMinMax(
        input_img, band, use_no_data_val, no_data_val)

    band_defns = [rsgislib.imagecalc.BandDefn('b1', input_img, band)]
    band_range = band_max - band_min
    exp = '(b1=={0})?0.0:(b1-{1})/{2}'.format(no_data_val, band_min,
                                              band_range)
    rsgislib.imagecalc.bandMath(output_img, exp, gdal_format,
                                rsgislib.TYPE_32FLOAT, band_defns)
    rsgislib.imageutils.popImageStats(output_img,
                                      usenodataval=True,
                                      nodataval=0.0,
                                      calcpyramids=True)
Пример #5
0
def create_datejson_file(image_list, out_msk_dir, out_json_file, gdal_format='KEA'):
    """
    Assume the date is the second component of the file name (XXX_YYYYMMDD_XXXX.xxx)
    
    """
    import rsgislib
    import datetime
    import os.path
    rsgis_utils = rsgislib.RSGISPyUtils()
    out_img_ext = rsgis_utils.getFileExtension(gdal_format)
    date_imgs = dict()
    for img in image_list:
        basename = rsgis_utils.get_file_basename(img)
        basename_comps = basename.split('_')
        print(basename_comps)
        if len(basename_comps) < 2:
            raise Exception("The filename must have at least two components split by '_'.")
        date_str = basename_comps[1]
        if len(date_str) != 8:
            raise Exception("The second component must have 8 characters YYYYMMDD. String provided: '{}'".format(date_str))
        
        date_obj = datetime.datetime.strptime(date_str, "%Y%m%d").strftime("%Y-%m-%d")
        date_imgs[date_obj] = dict()
        date_imgs[date_obj]["input"] = img
        date_imgs[date_obj]["output"] = os.path.join(out_msk_dir, "{}_chngmsk{}".format(basename, out_img_ext))

    with open(out_json_file, 'w') as out_json_file_obj:
        json.dump(date_imgs, out_json_file_obj, sort_keys=True, indent=4)
Пример #6
0
def createPy6SSensorFuncCall(inputFile, outputFile, wvLenInNM):
    """
    * inputFile - 
    * outputFile - 
    """

    rsgisUtils = rsgislib.RSGISPyUtils()
    lineList = rsgisUtils.readTextFile2List(inputFile)

    startWVLen = ''
    endWVLen = ''
    respStr = ''
    first = True
    for line in lineList:
        splitLine = line.split(',')
        if len(splitLine) == 2:
            if first:
                startWVLen = splitLine[0]
                endWVLen = splitLine[0]
                respStr = splitLine[1]
                first = False
            else:
                endWVLen = splitLine[0]
                respStr = respStr + ', ' + splitLine[1]

    if wvLenInNM:
        startWVLen = str(float(startWVLen) / 1000)
        endWVLen = str(float(endWVLen) / 1000)

    cmd = 's.wavelength = Py6S.Wavelength(' + startWVLen + ', ' + endWVLen + ', [' + respStr + '])'
    #print(cmd)
    rsgisUtils.writeList2File([cmd], outputFile)
def merge_annual_stats(input_pd_file,
                       country_names_lut_file,
                       out_feather=None,
                       out_excel=None,
                       excel_sheet=None,
                       out_csv=None):
    rsgis_utils = rsgislib.RSGISPyUtils()
    country_names_luts = rsgis_utils.readJSON2Dict(country_names_lut_file)

    data_df = pandas.read_feather(input_pd_file)

    if data_df is not None:
        cnty_lst = list()
        for region in data_df['region']:
            cnty_lst.append(country_names_luts['gid'][region])
        data_df['name'] = cnty_lst

        data_df = data_df[['region', 'name', 'count', 'area']]

        data_df = data_df.sort_values(by=['name']).reset_index()
        data_df = data_df.drop(['index'], axis=1)
        print(data_df)

        if out_feather is not None:
            data_df.to_feather(out_feather)
        if out_csv is not None:
            data_df.to_csv(out_csv)
        if out_excel is not None:
            if excel_sheet is None:
                excel_sheet = 'gmw_stats'
            data_df.to_excel(out_excel, sheet_name=excel_sheet)
    def perform_analysis(self, scn_db_obj, sen_obj, plgin_objs):
        logger.info("Processing Scene: {}".format(scn_db_obj.PID))
        if scn_db_obj.Invalid:
            return False, None, False

        success = True
        out_info = None
        outputs = False

        rsgis_utils = rsgislib.RSGISPyUtils()
        eodd_utils = EODataDownUtils()

        # Find the the valid image mask
        valid_img_file = rsgis_utils.findFileNone(scn_db_obj.ARDProduct_Path,
                                                  "*valid.tif")
        logger.debug("Valid Image File: {}".format(valid_img_file))

        # Find the the cloud image mask
        cloud_img_file = rsgis_utils.findFileNone(scn_db_obj.ARDProduct_Path,
                                                  "*clouds.tif")
        logger.debug("Cloud Mask File: {}".format(cloud_img_file))

        basename = rsgis_utils.get_file_basename(valid_img_file)
        basename = basename.replace('_valid', '')
        logger.debug("The basename for the processing is: {}".format(basename))

        base_tmp_dir = os.path.join(
            self.params["tmp_path"],
            "{}_{}_clearsky".format(scn_db_obj.Product_ID, scn_db_obj.PID))
        if not os.path.exists(base_tmp_dir):
            os.mkdir(base_tmp_dir)

        process_tmp_dir = os.path.join(base_tmp_dir, "processing")
        if not os.path.exists(process_tmp_dir):
            os.mkdir(process_tmp_dir)

        clear_sky_img = os.path.join(base_tmp_dir,
                                     "{}_clearsky.kea".format(basename))
        rsgislib.imagecalibration.calcClearSkyRegions(
            cloud_img_file,
            valid_img_file,
            clear_sky_img,
            'KEA',
            tmpPath=process_tmp_dir,
            deleteTmpFiles=False,
            initClearSkyRegionDist=5000,
            initClearSkyRegionMinSize=3000,
            finalClearSkyRegionDist=1000,
            morphSize=21)

        clear_sky_tif_img = eodd_utils.translateCloudOpGTIFF(
            clear_sky_img, scn_db_obj.ARDProduct_Path)

        if os.path.exists(base_tmp_dir):
            shutil.rmtree(base_tmp_dir)

        outputs = True
        out_info = {"clearskyimg": clear_sky_tif_img}

        return success, out_info, outputs
Пример #9
0
def calcBrightnessScaled(image, bBand, gBand, rBand, outImage, stats=True, gdalformat='KEA'):
    """ 
Helper function to calculate visable brightness, note the output no data value is -999.
    
Where:

:param image: is a string specifying the input image file.
:param bBand: is an int specifying the blue band in the input image (band indexing starts at 1)
:param gBand: is an int specifying the green band in the input image (band indexing starts at 1)
:param rBand: is an int specifying the red band in the input image (band indexing starts at 1)
:param outImage: is a string specifying the output image file.
:param stats: is a boolean specifying whether pyramids and stats should be calculated (Default: True)
:param gdalformat: is a string specifing the output image file format (Default: KEA)
    
"""
    rsgisUtils = rsgislib.RSGISPyUtils()
    uidStr = rsgisUtils.uidGenerator()
    tmpImg = os.path.splitext(outImage)[0]+'_tmp'+uidStr+'.'+rsgisUtils.getFileExtension(gdalformat)
    expression = '(blue+green+red)!=0?((blue/'+str(scalefac)+')+(green/'+str(scalefac)+')+(red/'+str(scalefac)+'))/3:-999'
    bandDefns = []
    bandDefns.append(rsgislib.imagecalc.BandDefn('blue', image, bBand))
    bandDefns.append(rsgislib.imagecalc.BandDefn('green', image, gBand))
    bandDefns.append(rsgislib.imagecalc.BandDefn('red', image, rBand))
    rsgislib.imagecalc.bandMath(tmpImg, expression, gdalformat, rsgislib.TYPE_32FLOAT, bandDefns)
    rsgislib.imageutils.normaliseImagePxlVals(inputimage=tmpImg, outputimage=outImage, gdalformat=gdalformat, datatype=rsgislib.TYPE_32FLOAT, innodataval=-999, outnodataval=-999, outmin=0, outmax=1, stretchtype=rsgislib.imageutils.STRETCH_LINEARSTDDEV, stretchparam=2)
    rsgisUtils.deleteFileWithBasename(tmpImg)
    # Set no data value
    rsgisUtils.setImageNoDataValue(outImage, -999)
    if stats:
        rsgislib.imageutils.popImageStats(outImage,False,-999.,True)
Пример #10
0
def calcNDWI(image, nBand, sBand, outImage, stats=True, gdalformat='KEA'):
    """ 
Helper function to calculate NDWI ((NIR-SWIR)/(NIR+SWIR)), note the output no data value is -999.

See: Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water 
                    features in remotely sensed imagery. International Journal of Remote Sensing, 
                    27(14), 3025–3033. http://doi.org/10.1080/01431160600589179
    
Where:

:param image: is a string specifying the input image file.
:param nBand: is an int specifying the nir band in the input image (band indexing starts at 1)
:param sBand: is an int specifying the swir band (e.g., Landsat TM Band 5) in the input image (band indexing starts at 1)
:param outImage: is a string specifying the output image file.
:param stats: is a boolean specifying whether pyramids and stats should be calculated (Default: True)
:param gdalformat: is a string specifing the output image file format (Default: KEA)
    
"""
    expression = '(nir+swir)!=0?(nir-swir)/(nir+swir):-999'
    bandDefns = []
    bandDefns.append(rsgislib.imagecalc.BandDefn('swir', image, sBand))
    bandDefns.append(rsgislib.imagecalc.BandDefn('nir', image, nBand))
    rsgislib.imagecalc.bandMath(outImage, expression, gdalformat,
                                rsgislib.TYPE_32FLOAT, bandDefns)
    # Set no data value
    rsgislib.RSGISPyUtils().setImageNoDataValue(outImage, -999)
    if stats:
        rsgislib.imageutils.popImageStats(outImage, False, -999., True)
Пример #11
0
 def createStage3ImageSubsets(self, inputImage, s2BordersImage, s3BordersClumps, subsetImgsDIR, subsetImgsMaskedDIR, subImgBaseName, minSize):
     segmentation.clump(s2BordersImage, s3BordersClumps, 'KEA', True, 0)
     rastergis.populateStats(s3BordersClumps, True, True)
         
     rastergis.spatialExtent(s3BordersClumps, 'minXX', 'minXY', 'maxXX', 'maxXY', 'minYX', 'minYY', 'maxYX', 'maxYY')
     
     rsgisUtils = rsgislib.RSGISPyUtils()
     dataType = rsgisUtils.getRSGISLibDataTypeFromImg(inputImage)
     
     ratDS = gdal.Open(s3BordersClumps, gdal.GA_Update)
     minX = rat.readColumn(ratDS, "minXX")
     maxX = rat.readColumn(ratDS, "maxXX")
     minY = rat.readColumn(ratDS, "minYY")
     maxY = rat.readColumn(ratDS, "maxYY")
     Histogram = rat.readColumn(ratDS, "Histogram")
     for i in range(minX.shape[0]):
         if i > 0:
             subImage = os.path.join(subsetImgsDIR, subImgBaseName + str(i) + '.kea')
             #print( "[" + str(minX[i]) + ", " + str(maxX[i]) + "][" + str(minY[i]) + ", " + str(maxY[i]) + "]" )
             imageutils.subsetbbox(inputImage, subImage, 'KEA', dataType, minX[i], maxX[i], minY[i], maxY[i])
             if Histogram[i] > minSize:
                 maskedFile = os.path.join(subsetImgsMaskedDIR, subImgBaseName + str(i) + '_masked.kea')
             else:
                 maskedFile = os.path.join(subsetImgsMaskedDIR, subImgBaseName + str(i) + '_burn.kea')
             imageutils.maskImage(subImage, s2BordersImage, maskedFile, 'KEA', dataType, 0, 0)
             rastergis.populateStats(maskedFile, True, False)
     ratDS = None
def create_gadm_lut(vec_file, vec_lyr, gid_col, ctry_name_col, lut_json_file):
    """
    A function which splits a vector layer by an attribute value into either different layers or different output
    files.

    :param vec_file: Input vector file
    :param vec_lyr: Input vector layer
    :param gid_col: The column name for the GID.
    :param ctry_name_col: The column name for the country names.
    :param lut_json_file: An output file with the LUT linking numeric ID and region unique value.

    """
    import geopandas
    import rsgislib

    base_gpdf = geopandas.read_file(vec_file, layer=vec_lyr)

    lut = dict()
    lut['gid'] = dict()
    lut['ctry'] = dict()
    for i, row in base_gpdf.iterrows():
        lut['gid'][row[gid_col]] = row[ctry_name_col]
        lut['ctry'][row[ctry_name_col]] = row[gid_col]

    rsgis_utils = rsgislib.RSGISPyUtils()
    rsgis_utils.writeDict2JSON(lut, lut_json_file)
Пример #13
0
def calcBrightness(image, bBand, gBand, rBand, outImage, stats=True, gdalformat='KEA', scalefac=1000):
    """ 
Helper function to calculate visable brightness, note the output no data value is -999.
    
Where:

:param image: is a string specifying the input image file.
:param bBand: is an int specifying the blue band in the input image (band indexing starts at 1)
:param gBand: is an int specifying the green band in the input image (band indexing starts at 1)
:param rBand: is an int specifying the red band in the input image (band indexing starts at 1)
:param outImage: is a string specifying the output image file.
:param stats: is a boolean specifying whether pyramids and stats should be calculated (Default: True)
:param gdalformat: is a string specifing the output image file format (Default: KEA)
:param scalefac: is a float which can be used retirved reflectance between 0-1 (Default: 1000 to match rsgislib/arcsi)
    
"""
    expression = '(blue+green+red)!=0?((blue/'+str(scalefac)+')+(green/'+str(scalefac)+')+(red/'+str(scalefac)+'))/3:-999'
    bandDefns = []
    bandDefns.append(rsgislib.imagecalc.BandDefn('blue', image, bBand))
    bandDefns.append(rsgislib.imagecalc.BandDefn('green', image, gBand))
    bandDefns.append(rsgislib.imagecalc.BandDefn('red', image, rBand))
    rsgislib.imagecalc.bandMath(outImage, expression, gdalformat, rsgislib.TYPE_32FLOAT, bandDefns)
    # Set no data value
    rsgislib.RSGISPyUtils().setImageNoDataValue(outImage, -999)
    if stats:
        rsgislib.imageutils.popImageStats(outImage,False,-999.,True)
Пример #14
0
def performClumpingSingleThread(inputImage,
                                clumpsImage,
                                tmpDIR='tmp',
                                width=2000,
                                height=2000,
                                gdalformat='KEA'):
    """
Clump the input image using a tiled processing chain allowing large images to be clumped more quickly.

:param inputImage: the input image to be clumped.
:param clumpsImage: the output clumped image.
:param tmpDIR: the temporary directory where intermediate files will be written (default is 'tmp'). Directory will be created and deleted if does not exist.
:param width: int for width of the image tiles used for processing (Default = 2000).
:param height: int for height of the image tiles used for processing (Default = 2000).
:param gdalformat: string with the GDAL image format for the output image (Default = KEA). NOTE. KEA is used as intermediate format internally and therefore needs to be available.

    """
    createdTmp = False
    if not os.path.exists(tmpDIR):
        os.makedirs(tmpDIR)
        createdTmp = True

    rsgisUtils = rsgislib.RSGISPyUtils()
    uidStr = rsgisUtils.uidGenerator()
    dataType = rsgisUtils.getRSGISLibDataTypeFromImg(inputImage)
    baseName = os.path.splitext(os.path.basename(inputImage))[0] + "_" + uidStr
    imgTilesDIR = os.path.join(tmpDIR, "imgtiles_" + uidStr)
    tilesClumpsDIR = os.path.join(tmpDIR, "imgclumpstiles_" + uidStr)
    tilesImgBase = os.path.join(imgTilesDIR, baseName)
    initMergedClumps = os.path.join(tmpDIR,
                                    "MergedInitClumps_" + uidStr + ".kea")
    if not os.path.exists(imgTilesDIR):
        os.makedirs(imgTilesDIR)
    if not os.path.exists(tilesClumpsDIR):
        os.makedirs(tilesClumpsDIR)

    imageutils.createTiles(inputImage, tilesImgBase, int(width), int(height),
                           0, False, 'KEA', dataType, 'kea')
    imageTiles = glob.glob(tilesImgBase + "*")

    for tile in imageTiles:
        tilBaseName = os.path.splitext(os.path.basename(tile))[0]
        clumpedTile = os.path.join(tilesClumpsDIR, tilBaseName + '_clumps.kea')
        segmentation.clump(tile, clumpedTile, 'KEA', True, 0, True)

    clumpTiles = glob.glob(os.path.join(tilesClumpsDIR, '*_clumps.kea'))
    print("Create Blank Image")
    imageutils.createCopyImage(inputImage, initMergedClumps, 1, 0, 'KEA',
                               rsgislib.TYPE_32UINT)
    print("Merge Tiles into Blank Image")
    segmentation.mergeClumpImages(clumpTiles, initMergedClumps, True)
    print("Merge Tile Boundaries")
    segmentation.mergeEquivClumps(initMergedClumps, clumpsImage, gdalformat,
                                  ['PixelVal'])

    shutil.rmtree(imgTilesDIR)
    shutil.rmtree(tilesClumpsDIR)
    os.remove(initMergedClumps)
    if createdTmp:
        shutil.rmtree(tmpDIR)
Пример #15
0
def genSen2DownloadListGoogle(dbFile,
                              tile,
                              outFile,
                              outpath,
                              cloudCover=None,
                              startDate=None,
                              endDate=None,
                              limit=None,
                              multiDwn=False,
                              lstCmds=False):
    """
    Using sqlite database query and create a list of files to download
    """
    # Import python sqlite3 module
    import sqlite3

    try:
        ggSen2DBConn = sqlite3.connect(dbFile)
        ggSen2DBCursor = ggSen2DBConn.cursor()

        queryVar = [tile]
        query = 'SELECT BASE_URL FROM SEN2 WHERE MGRS_TILE = ?'

        if not cloudCover is None:
            query = query + ' AND CLOUD_COVER < ?'
            queryVar.append(cloudCover)

        if not startDate is None:
            query = query + ' AND date(SENSING_TIME) > date(?)'
            queryVar.append(startDate)

        if not endDate is None:
            query = query + ' AND date(SENSING_TIME) < date(?)'
            queryVar.append(endDate)

        if not limit is None:
            query = query + ' ORDER BY CLOUD_COVER ASC LIMIT {}'.format(limit)

        multiStr = ''
        if multiDwn:
            multiStr = '-m'

        cmdLst = []
        for row in ggSen2DBCursor.execute(query, queryVar):
            if lstCmds:
                cmdLst.append("gsutil " + multiStr + " cp -r " + row[0] + " " +
                              outpath)
            else:
                cmdLst.append(row[0])

        rsgisUtils = rsgislib.RSGISPyUtils()
        rsgisUtils.writeList2File(cmdLst, outFile)

    except ARCSIException as e:
        print("Error: {}".format(e), file=sys.stderr)
    except Exception as e:
        print("Error: {}".format(e), file=sys.stderr)
def merge_gmw_tile_stats(tile_stats_dir,
                         out_json_file,
                         uid_lut_file=None,
                         out_feather=None,
                         out_excel=None,
                         excel_sheet=None,
                         out_csv=None):
    rsgis_utils = rsgislib.RSGISPyUtils()
    tile_files = glob.glob(os.path.join(tile_stats_dir, "*.json"))
    first = True
    for tile_stats_file in tqdm.tqdm(tile_files):
        tile_stats_dict = rsgis_utils.readJSON2Dict(tile_stats_file)
        if first:
            combined_stats = tile_stats_dict
            first = False
        else:
            for uid in combined_stats:
                if uid in tile_stats_dict:
                    combined_stats[uid]['count'] += tile_stats_dict[uid][
                        'count']
                    combined_stats[uid]['area'] += tile_stats_dict[uid]['area']

    combined_stats_vld = dict()
    for uid in combined_stats:
        if combined_stats[uid]['count'] > 0:
            combined_stats_vld[uid] = combined_stats[uid]

    rsgis_utils.writeDict2JSON(combined_stats_vld, out_json_file)

    if (out_feather is not None) or (out_excel is not None) or (out_csv
                                                                is not None):
        df_dict = dict()
        df_dict['uid'] = list()
        df_dict['count'] = list()
        df_dict['area'] = list()

        if uid_lut_file is not None:
            uid_lut_dict = rsgis_utils.readJSON2Dict(uid_lut_file)
            df_dict['region'] = list()

        for uid in combined_stats_vld:
            df_dict['uid'].append(uid)
            df_dict['count'].append(combined_stats_vld[uid]['count'])
            df_dict['area'].append(combined_stats_vld[uid]['area'])
            if uid_lut_file is not None:
                df_dict['region'].append(uid_lut_dict['id'][uid])

        df_stats = pandas.DataFrame.from_dict(df_dict)
        if out_feather is not None:
            df_stats.to_feather(out_feather)
        if out_csv is not None:
            df_stats.to_csv(out_csv)
        if out_excel is not None:
            if excel_sheet is None:
                excel_sheet = 'gmw_stats'
            df_stats.to_excel(out_excel, sheet_name=excel_sheet)
Пример #17
0
def calcImgsPxlMode(inputImgs, outputImg, gdalformat, no_data_val=0):
    """
Function which calculates the mode of a group of images.

Warning, this function can be very slow. Use rsgislib.imagecalc.imagePixelColumnSummary

:param inputImgs: the list of images
:param outputImg: the output image file name and path (will be same dimensions as the input)
:param gdalformat: the GDAL image file format of the output image file.

"""
    import scipy.stats
    from rios import applier

    rsgis_utils = rsgislib.RSGISPyUtils()

    datatype = rsgis_utils.getRSGISLibDataTypeFromImg(inputImgs[0])
    numpyDT = rsgis_utils.getNumpyDataType(datatype)

    try:
        import tqdm
        progress_bar = rsgislib.TQDMProgressBar()
    except:
        from rios import cuiprogress
        progress_bar = cuiprogress.GDALProgressBar()

    infiles = applier.FilenameAssociations()
    infiles.images = inputImgs
    outfiles = applier.FilenameAssociations()
    outfiles.outimage = outputImg
    otherargs = applier.OtherInputs()
    otherargs.no_data_val = no_data_val
    otherargs.numpyDT = numpyDT
    aControls = applier.ApplierControls()
    aControls.progress = progress_bar
    aControls.drivername = gdalformat
    aControls.omitPyramids = True
    aControls.calcStats = False

    def _applyCalcMode(info, inputs, outputs, otherargs):
        """
        This is an internal rios function
        """
        image_data = numpy.concatenate(inputs.images,
                                       axis=0).astype(numpy.float32)
        image_data[image_data == otherargs.no_data_val] = numpy.nan
        mode_arr, count_arr = scipy.stats.mode(image_data,
                                               axis=0,
                                               nan_policy='omit')
        outputs.outimage = mode_arr.astype(otherargs.numpyDT)

    applier.apply(_applyCalcMode,
                  infiles,
                  outfiles,
                  otherargs,
                  controls=aControls)
Пример #18
0
def flipRefChipHDF5File(input_h5_file, output_h5_file, datatype=None):
    """
    A function which flips each sample in both the x and y axis. So the
    output file will have double the number of samples as the input file.

    :param input_h5_file: The input HDF5 file for chips extracted from images.
    :param output_h5_file: The output HDF5 file for chips extracted from images.
    :param datatype: is the data type used for the output HDF5 file (e.g., rsgislib.TYPE_32FLOAT). If None (default)
                     then the output data type will be float32.

    """
    import tqdm
    import h5py
    import numpy
    import rsgislib
    rsgis_utils = rsgislib.RSGISPyUtils()
    if datatype is None:
        datatype = rsgislib.TYPE_32FLOAT

    f = h5py.File(input_h5_file, 'r')
    n_in_feats = f['DATA/REF'].shape[0]
    chip_size = f['DATA/REF'].shape[1]
    n_bands = f['DATA/DATA'].shape[3]

    n_out_feats = n_in_feats * 2

    feat_arr = numpy.zeros([n_out_feats, chip_size, chip_size, n_bands], dtype=numpy.float32)
    feat_ref_arr = numpy.zeros([n_out_feats, chip_size, chip_size], dtype=numpy.uint16)

    i_feat = 0
    for n in tqdm.tqdm(range(n_in_feats)):
        numpy.copyto(feat_ref_arr[i_feat], numpy.flip(f['DATA/REF'][n].T, axis=0).T, casting='safe')
        numpy.copyto(feat_arr[i_feat], numpy.flip(f['DATA/DATA'][n].T, axis=1).T, casting='safe')
        i_feat += 1
        numpy.copyto(feat_ref_arr[i_feat], numpy.flip(f['DATA/REF'][n].T, axis=1).T, casting='safe')
        numpy.copyto(feat_arr[i_feat], numpy.flip(f['DATA/DATA'][n].T, axis=2).T, casting='safe')
        i_feat += 1

    f.close()

    ######################################################################
    # Create the output HDF5 file and populate with data.
    ######################################################################
    h5_dtype = rsgis_utils.getNumpyCharCodesDataType(datatype)
    fH5Out = h5py.File(output_h5_file, 'w')
    dataGrp = fH5Out.create_group("DATA")
    metaGrp = fH5Out.create_group("META-DATA")
    dataGrp.create_dataset('DATA', data=feat_arr, chunks=(250, chip_size, chip_size, n_bands),
                           compression="gzip", shuffle=True, dtype=h5_dtype)
    dataGrp.create_dataset('REF', data=feat_ref_arr, chunks=(250, chip_size, chip_size),
                           compression="gzip", shuffle=True, dtype='H')
    describDS = metaGrp.create_dataset("DESCRIPTION", (1,), dtype="S10")
    describDS[0] = 'IMAGE REF TILES'.encode()
    fH5Out.close()
    def do_processing(self, **kwargs):
        rsgis_utils = rsgislib.RSGISPyUtils()
        unq_vals = rsgis_utils.readJSON2Dict(self.params['unq_vals_file'])

        lut_vals = dict()
        for val in unq_vals:
            lut_vals[val] = dict()
            lut_vals[val]['count'] = 0
            lut_vals[val]['area'] = 0.0

        calc_unq_val_pxl_areas(self.params['tile_pxa_img'],
                               self.params['tile_roi_img'],
                               self.params['img_tile'], lut_vals)

        for val in unq_vals:
            lut_vals[val]['count'] = int(lut_vals[val]['count'])
            lut_vals[val]['area'] = float(lut_vals[val]['area'])

        rsgis_utils = rsgislib.RSGISPyUtils()
        rsgis_utils.writeDict2JSON(lut_vals, self.params['out_file'])
Пример #20
0
 def performStage2Tiling(self, inputImage, tileShp, tilesRat, tilesBase,
                         tilesMetaDIR, tilesImgDIR, tmpDIR, width, height,
                         validDataThreshold, bordersImage):
     tilingutils.createMinDataTiles(inputImage, tileShp, tilesRat, width,
                                    height, validDataThreshold,
                                    bordersImage, True, True, tmpDIR)
     tilingutils.createTileMaskImagesFromClumps(tilesRat, tilesBase,
                                                tilesMetaDIR, "KEA")
     rsgisUtils = rsgislib.RSGISPyUtils()
     dataType = rsgisUtils.getRSGISLibDataTypeFromImg(inputImage)
     tilingutils.createTilesFromMasks(inputImage, tilesBase, tilesMetaDIR,
                                      tilesImgDIR, dataType, 'KEA')
Пример #21
0
def get_class_training_chips_data(imgBandInfo, classVecSampleInfo, chip_h_size, tmpdir, refImg=None):
    """
    A function to extract training chips (windows/regions) for vector regions for a given input image set.

    :param imgBandInfo: A list of rsgislib.imageutils.ImageBandInfo objects to define the images and bands of interest.
    :param classVecSampleInfo: A list of rsgislib.classification.ClassVecSamplesInfoObj objects to define the
                               training regions.
    :param chip_h_size: is half the chip size to be extracted (i.e., 10 with output image chips 21x21, 10 pixels
                        either size of the one of interest).
    :param tmpdir: A directory for temporary outputs created during the processing.
    :param refImg: A reference image which defines the area of interest, pixel size etc. for the processing.
                   If None then an image will be generated using the input images but the tmpdir needs to be defined.
    :return: dictionary of ClassSimpleInfoObj objects.

    """
    import rsgislib
    import rsgislib.imageutils
    import rsgislib.vectorutils
    import os
    import os.path
    import random
    import shutil

    # Get valid mask, rasterised to this
    rsgis_utils = rsgislib.RSGISPyUtils()
    uid_str = rsgis_utils.uidGenerator()
    tmp_lcl_dir = os.path.join(tmpdir, "get_class_training_chips_data_{}".format(uid_str))
    if not os.path.exists(tmp_lcl_dir):
        os.makedirs(tmp_lcl_dir)

    rasterise_ref_img = refImg
    if refImg is None:
        rasterise_ref_img = os.path.join(tmp_lcl_dir, "ref_img_vmsk.kea")
        rsgislib.imageutils.create_valid_mask(imgBandInfo, rasterise_ref_img, 'KEA', tmp_lcl_dir)

    classInfo = dict()
    for class_sample_info in classVecSampleInfo:
        cls_basename = rsgis_utils.get_file_basename(class_sample_info.fileH5)
        out_vec_img = os.path.join(tmp_lcl_dir, "{}_img.kea".format(cls_basename))
        rsgislib.vectorutils.rasteriseVecLyr(class_sample_info.vecfile, class_sample_info.veclyr, rasterise_ref_img,
                                             out_vec_img, gdalformat="KEA", burnVal=class_sample_info.id,
                                             datatype=rsgislib.TYPE_16UINT, vecAtt=None, vecExt=False, thematic=True,
                                             nodata=0)
        rsgislib.imageutils.extractChipZoneImageBandValues2HDF(imgBandInfo, out_vec_img, class_sample_info.id,
                                                               chip_h_size, class_sample_info.fileH5)
        rand_red_val = random.randint(1, 255)
        rand_grn_val = random.randint(1, 255)
        rand_blu_val = random.randint(1, 255)
        classInfo[class_sample_info.classname] = ClassSimpleInfoObj(id=class_sample_info.id,
                                                                    fileH5=class_sample_info.fileH5, red=rand_red_val,
                                                                    green=rand_grn_val, blue=rand_blu_val)
    shutil.rmtree(tmp_lcl_dir)
    return classInfo
Пример #22
0
def calcWSG84PixelArea(img, out_img, scale=10000, gdalformat='KEA'):
    """
A function which calculates the area (in metres) of the pixel projected in WGS84.

:param img: input image, for which the per-pixel area will be calculated.
:param out_img: output image file.
:param scale: scale the output area to unit of interest. Scale=10000(Ha), Scale=1(sq m), Scale=1000000(sq km), Scale=4046.856(Acre), Scale=2590000(sq miles), Scale=0.0929022668(sq feet)

"""
    import rsgislib.tools
    from rios import applier

    try:
        import tqdm
        progress_bar = rsgislib.TQDMProgressBar()
    except:
        from rios import cuiprogress
        progress_bar = cuiprogress.GDALProgressBar()

    rsgis_utils = rsgislib.RSGISPyUtils()
    x_res, y_res = rsgis_utils.getImageRes(img)

    infiles = applier.FilenameAssociations()
    infiles.img = img
    outfiles = applier.FilenameAssociations()
    outfiles.outimage = out_img
    otherargs = applier.OtherInputs()
    otherargs.x_res = x_res
    otherargs.y_res = y_res
    otherargs.scale = float(scale)
    aControls = applier.ApplierControls()
    aControls.progress = progress_bar
    aControls.drivername = gdalformat
    aControls.omitPyramids = False
    aControls.calcStats = False

    def _calcPixelArea(info, inputs, outputs, otherargs):
        xBlock, yBlock = info.getBlockCoordArrays()

        x_res_arr = numpy.zeros_like(yBlock, dtype=float)
        x_res_arr[...] = otherargs.x_res
        y_res_arr = numpy.zeros_like(yBlock, dtype=float)
        y_res_arr[...] = otherargs.y_res
        x_res_arr_m, y_res_arr_m = rsgislib.tools.degrees_to_metres(
            yBlock, x_res_arr, y_res_arr)
        outputs.outimage = numpy.expand_dims(
            (x_res_arr_m * y_res_arr_m) / otherargs.scale, axis=0)

    applier.apply(_calcPixelArea,
                  infiles,
                  outfiles,
                  otherargs,
                  controls=aControls)
Пример #23
0
def convert_between_tms_xyz(tiles_dir):
    """
    A function which converts between TMS and XYZ tile indexing. The conversion is performed in-situ
    with the files simply renamed. If a tile cache is in TMS format then this function will convert
    it to XYZ, while if it is in XYZ format then it will convert it to TMS (they are easily interchangeable)

    The TMS format uses a grid with the origin at the bottom-left. While the XYZ
    format is uses a grid with the origin in the top-left.

    XYZ grids can be loads into QGIS and other GIS systems as layers.
    TMS grids are outputted by gdal2tiles.py.

    :param tiles_dir: The input directory for the tile cache.

    """
    import os
    import rsgislib
    import tqdm
    c_pwd = os.getcwd()
    rsgis_utils = rsgislib.RSGISPyUtils()
    in_zoom_dirs = []
    lcl_files = os.listdir(tiles_dir)
    for lcl_file in lcl_files:
        lcl_name = lcl_file
        lcl_file = os.path.join(tiles_dir, lcl_file)
        if os.path.isdir(lcl_file) and rsgis_utils.isNumber(lcl_name):
            in_zoom_dirs.append(os.path.abspath(lcl_file))
    for zoom_dir in tqdm.tqdm(in_zoom_dirs, desc='overall'):
        zoom = int(os.path.basename(zoom_dir))
        x_dirs = os.listdir(zoom_dir)
        for x_dir in tqdm.tqdm(x_dirs,
                               desc='zoom {}'.format(zoom),
                               leave=False):
            if rsgis_utils.isNumber(x_dir):
                x = int(x_dir)
                x_dir = os.path.join(zoom_dir, x_dir)
                if os.path.isdir(x_dir) and rsgis_utils.isNumber(x):
                    y_files = os.listdir(x_dir)
                    os.chdir(x_dir)
                    for y_file in tqdm.tqdm(y_files, desc='y', leave=False):
                        y_cur_file = os.path.join(x_dir, y_file)
                        y_in_str = os.path.splitext(y_file)[0]
                        if rsgis_utils.isNumber(y_in_str):
                            y_in = int(y_in_str)
                            img_ext = os.path.splitext(y_file)[1]
                            n_tile_x, n_tile_y, n_zoom = flip_xyz_tms_tiles(
                                x, y_in, zoom)
                            out_img_file = "{}{}".format(n_tile_y, img_ext)
                            os.rename(y_cur_file, out_img_file)
    os.chdir(c_pwd)
 def gen_command_info(self, **kwargs):
     rsgis_utils = rsgislib.RSGISPyUtils()
     img_tiles = glob.glob(kwargs['img_tiles'])
     for img_tile in img_tiles:
         tile_base_name = rsgis_utils.get_file_basename(img_tile,
                                                        checkvalid=False)
         tile_base_name = tile_base_name.replace(kwargs['tile_name_rm'], '')
         out_pxa_file = os.path.join(kwargs['out_pxa_path'],
                                     "{}_pxa.kea".format(tile_base_name))
         if not os.path.exists(out_pxa_file):
             c_dict = dict()
             c_dict['img_tile'] = img_tile
             c_dict['tile_pxa_img'] = out_pxa_file
             self.params.append(c_dict)
Пример #25
0
def add_unq_id_val(vec_file,
                   vec_lyr,
                   unq_col,
                   unq_id_col,
                   out_vec_file,
                   out_vec_lyr,
                   out_format="GPKG",
                   lut_json_file=None):
    """
    A function which splits a vector layer by an attribute value into either different layers or different output
    files.

    :param vec_file: Input vector file
    :param vec_lyr: Input vector layer
    :param unq_col: The column name used to define unique regions.
    :param unq_id_col: The output column name used to create a numeric unique ID
    :param out_vec_file: The output vector file with the selected features.
    :param out_vec_lyr: The output layer file with the selected features.
    :param out_format: the output vector format (Default: GPKG)
    :param lut_json_file: An output file with the LUT linking numeric ID and region unique value.
                          If None no output is produced.

    """
    import geopandas
    import numpy
    import tqdm

    base_gpdf = geopandas.read_file(vec_file, layer=vec_lyr)
    unq_vals = base_gpdf[unq_col].unique()
    base_gpdf[unq_id_col] = numpy.zeros((base_gpdf.shape[0]), dtype=int)

    unq_id_val = 1
    lut = dict()
    lut['id'] = dict()
    lut['val'] = dict()
    for unq_val in tqdm.tqdm(unq_vals):
        base_gpdf.loc[base_gpdf[unq_col] == unq_val, unq_id_col] = unq_id_val
        lut['id'][unq_id_val] = unq_val
        lut['val'][unq_val] = unq_id_val
        unq_id_val += 1

    if out_format == 'GPKG':
        base_gpdf.to_file(out_vec_file, layer=out_vec_lyr, driver=out_format)
    else:
        base_gpdf.to_file(out_vec_file, driver=out_format)

    if lut_json_file is not None:
        import rsgislib
        rsgis_utils = rsgislib.RSGISPyUtils()
        rsgis_utils.writeDict2JSON(lut, lut_json_file)
Пример #26
0
    def create_output_imgs(self, out_imgs_info):
        """
        A function to create the output image(s) if required during processing.

        :param out_imgs_info: a list of rsgislib.imageutils.OutImageInfo objects specifying the output image(s).

        """
        rsgis_utils = rsgislib.RSGISPyUtils()
        out_wkt_str = rsgis_utils.getWKTFromEPSGCode(int(self.img_epsg))
        if out_wkt_str is None:
            raise Exception(
                "Did not have a projection string for the EPSG code: {}".
                format(self.img_epsg))
        if math.fabs(self.img_pxl_res[0]) != math.fabs(self.img_pxl_res[1]):
            raise Exception(
                "Currently limited to only outputting images with square pixels."
            )
        out_img_res = math.fabs(self.img_pxl_res[0])
        self.out_imgs_info = out_imgs_info
        self.out_imgs_objs = dict()
        for img in out_imgs_info:
            rsgislib.imageutils.createBlankImgFromBBOX(self.bbox_intersect,
                                                       out_wkt_str,
                                                       img.file_name,
                                                       out_img_res,
                                                       img.no_data_val,
                                                       img.nbands,
                                                       img.gdal_format,
                                                       img.datatype,
                                                       snap2grid=False)

            self.out_imgs_objs[img.name] = dict()
            self.out_imgs_objs[img.name]['dataset'] = gdal.Open(
                img.file_name, gdal.GA_Update)
            if self.out_imgs_objs[img.name]['dataset'] is None:
                raise Exception("Could not open image file: {}".format(
                    img.file_name))
            self.out_imgs_objs[img.name]['nbands'] = img.nbands
            self.out_imgs_objs[img.name]['bands'] = dict()
            for band in range(img.nbands):
                self.out_imgs_objs[img.name]['bands'][
                    band + 1] = self.out_imgs_objs[
                        img.name]['dataset'].GetRasterBand(band + 1)
                if self.out_imgs_objs[img.name]['bands'][band + 1] is None:
                    raise Exception(
                        "Could not open band {} within image {}".format(
                            band + 1, img.file_name))
Пример #27
0
def extract_sen1_img_data(eodd_config_file, roi_vec_file, roi_vec_lyr,
                          start_date, end_date, out_dir, tmp_dir):
    rsgis_utils = rsgislib.RSGISPyUtils()
    bbox = rsgis_utils.getVecLayerExtent(roi_vec_file, roi_vec_lyr)
    bbox_wgs84 = rsgis_utils.reprojBBOX_epsg(bbox, 27700, 4326)

    sys_main_obj = eodatadown.eodatadownsystemmain.EODataDownSystemMain()
    sys_main_obj.parse_config(eodd_config_file)

    sen_obj = sys_main_obj.get_sensor_obj("Sentinel1ASF")
    scns = sen_obj.query_scn_records_date_bbox(start_date,
                                               end_date,
                                               bbox_wgs84,
                                               start_rec=0,
                                               n_recs=0,
                                               valid=True,
                                               cloud_thres=None)
    print("N scns = {}".format(len(scns)))

    for scn in scns:
        print(scn.ARDProduct_Path)
        scn_dB_file = glob.glob(
            os.path.join(scn.ARDProduct_Path, "*dB_osgb.tif"))
        if len(scn_dB_file) == 1:
            scn_dB_file = scn_dB_file[0]
        else:
            raise Exception("There should only be 1 dB image for the scene.")
        basename = os.path.splitext(os.path.basename(scn_dB_file))[0]
        scn_dir = os.path.join(out_dir, "{}_{}".format(scn.Product_File_ID,
                                                       scn.PID))
        if not os.path.exists(scn_dir):
            os.mkdir(scn_dir)

        scn_tmp_dir = os.path.join(
            tmp_dir, "{}_{}".format(scn.Product_File_ID, scn.PID))
        if not os.path.exists(scn_tmp_dir):
            os.mkdir(scn_tmp_dir)

        metadata_file = os.path.join(scn_dir, "{}.json".format(basename))
        export_metadata(scn, metadata_file)

        out_img = os.path.join(scn_dir, "{}_sub.tif".format(basename))
        subset_mask_img(scn_dB_file, roi_vec_file, roi_vec_lyr, scn_tmp_dir,
                        out_img)
        print("")
Пример #28
0
def performDOSCalc(inputFile, outputFile, gdalformat='KEA', nonNegative=True, noDataVal=0, darkObjReflVal=0, darkObjPercentile=0.01, copyBandNames=True, calcStatsPyd=True):
    """
A command to perform a dark object subtraction (DOS) on an input image.

:param inputFile: input image to which the DOS method is to be applied. Typically, this image with be in top of atmosphere reflectance (TOA)
:param outputFile: the output image file
:param gdalformat: the output image file format (default = KEA)
:param nonNegative: is a boolean specifying where negative output pixel values will be accepted (Dafualt is True; i.e., no negative values)
:param noDataVal: is the no data value within the input image file.
:param darkObjReflVal: is an offset which is applied to all pixel values to make a minimum reflectance value (Default = 0)
:param darkObjPercentile: is the percentile of the input image used to define the dark object threshold, range is 0 - 1 (Default is 0.01; i.e., 1%).
:param copyBandNames: is a boolean specifying that the band names of the input image should be copied to the output image file (Default: True)
:param calcStatsPyd: is a boolean specifying that the image stats and pyramids should be calculated on the output image (Default: True)

Example::

    import rsgislib.imagecalibration
    rsgislib.imagecalibration.performDOSCalc("LS5TM_20110701_lat52lon421_r24p204_rad_toa.kea", 'LS5TM_20110701_lat52lon421_r24p204_rad_toa_dos.kea")

"""
    import rsgislib
    import rsgislib.imagecalc
    import rsgislib.imageutils
    import collections
    
    rsgisUtils = rsgislib.RSGISPyUtils()
    outDataType = rsgisUtils.getRSGISLibDataTypeFromImg(inputFile)
    
    percentList = rsgislib.imagecalc.bandPercentile(inputFile, darkObjPercentile, noDataVal)
        
    offsetsList = list()
    OffVal = collections.namedtuple('DOSOffset', ['offset'])
    for val in percentList:
        offsetsList.append(OffVal(offset=val))
    
    applySubtractSingleOffsets(inputFile, outputFile, gdalformat, outDataType, nonNegative, True, noDataVal, darkObjReflVal, offsetsList)
    
    if copyBandNames:
        bandNames = rsgislib.imageutils.getBandNames(inputFile)
        rsgislib.imageutils.setBandNames(outputFile, bandNames)
    
    if calcStatsPyd:
        rsgislib.imageutils.popImageStats(outputFile, usenodataval=True, nodataval=noDataVal, calcpyramids=True)
Пример #29
0
def split_chip_sample_ref_train_valid_test(input_sample_h5_file, train_h5_file, valid_h5_file, test_h5_file,
                                           test_sample, valid_sample, train_sample=None, rand_seed=42, datatype=None):
    """
    A function to split a chip HDF5 samples file (from rsgislib.imageutils.extractChipZoneImageBandValues2HDF)
    into three (i.e., Training, Validation and Testing).

    :param input_sample_h5_file: Input HDF file, probably from rsgislib.imageutils.extractZoneImageBandValues2HDF.
    :param train_h5_file: Output file with the training data samples (this has the number of samples left following
                          the removal of the test and valid samples if train_sample=None)
    :param valid_h5_file: Output file with the valid data samples.
    :param test_h5_file: Output file with the testing data samples.
    :param test_sample: The size of the testing sample to be taken.
    :param valid_sample: The size of the validation sample to be taken.
    :param train_sample: The size of the training sample to be taken. If None then the remaining samples are returned.
    :param rand_seed: The random seed to be used to randomly select the sub-samples.
    :param datatype: is the data type used for the output HDF5 file (e.g., rsgislib.TYPE_32FLOAT). If None (default)
                     then the output data type will be float32.

    """
    import rsgislib
    from rsgislib.imageutils import splitSampleRefChipHDF5File
    import os
    import os.path

    rsgis_utils = rsgislib.RSGISPyUtils()
    uid_str = rsgis_utils.uidGenerator()
    out_dir = os.path.split(os.path.abspath(test_h5_file))[0]
    tmp_train_valid_sample_file = os.path.join(out_dir, "train_valid_tmp_sample_{}.h5".format(uid_str))
    splitSampleRefChipHDF5File(input_sample_h5_file, test_h5_file, tmp_train_valid_sample_file,
                               test_sample, rand_seed, datatype)
    if train_sample is not None:
        tmp_train_sample_file = os.path.join(out_dir, "train_tmp_sample_{}.h5".format(uid_str))
        splitSampleRefChipHDF5File(tmp_train_valid_sample_file, valid_h5_file, tmp_train_sample_file,
                                   valid_sample, rand_seed, datatype)
        tmp_remain_sample_file = os.path.join(out_dir, "remain_tmp_sample_{}.h5".format(uid_str))
        splitSampleRefChipHDF5File(tmp_train_sample_file, train_h5_file, tmp_remain_sample_file,
                                   train_sample, rand_seed, datatype)
        os.remove(tmp_train_sample_file)
        os.remove(tmp_remain_sample_file)
    else:
        splitSampleRefChipHDF5File(tmp_train_valid_sample_file, valid_h5_file, train_h5_file,
                                   valid_sample, rand_seed, datatype)
    os.remove(tmp_train_valid_sample_file)
    def gen_command_info(self, **kwargs):
        if not os.path.exists(kwargs['out_path']):
            os.mkdir(kwargs['out_path'])
        rsgis_utils = rsgislib.RSGISPyUtils()
        base_gpdf = geopandas.read_file(kwargs['roi_vec'],
                                        layer=kwargs['roi_vec_lyr'])
        unq_vals = base_gpdf[kwargs['roi_vec_col']].unique().tolist()
        base_gpdf = None
        rsgis_utils.writeDict2JSON(unq_vals, kwargs['unq_vals_file'])

        img_tiles = glob.glob(kwargs['img_tiles'])
        for img_tile in img_tiles:
            tile_base_name = rsgis_utils.get_file_basename(img_tile,
                                                           checkvalid=False)
            out_file = os.path.join(kwargs['out_path'],
                                    "{}_stats.json".format(tile_base_name))
            if not os.path.exists(out_file):
                tile_generic_base_name = tile_base_name.replace(
                    kwargs['tile_name_rm'], '')
                tile_roi_img = os.path.join(
                    kwargs['roi_img_path'],
                    "{}_roi_{}.kea".format(tile_generic_base_name,
                                           kwargs['roi_name']))
                if not os.path.exists(tile_roi_img):
                    raise Exception("Could not file ROI image file: {}".format(
                        tile_roi_img))
                tile_pxa_img = os.path.join(
                    kwargs['pxa_img_path'],
                    "{}_pxa.kea".format(tile_generic_base_name))
                if not os.path.exists(tile_pxa_img):
                    raise Exception(
                        "Could not file Pixel Area image file: {}".format(
                            tile_pxa_img))

                c_dict = dict()
                c_dict['img_tile'] = img_tile
                c_dict['unq_vals_file'] = kwargs['unq_vals_file']
                c_dict['tile_pxa_img'] = tile_pxa_img
                c_dict['tile_roi_img'] = tile_roi_img
                c_dict['out_file'] = out_file
                self.params.append(c_dict)