Пример #1
0
 def refracted(self, ray: Ray) -> Optional[Ray]:
     position = self.intersection_position(ray)
     if position is None:
         return None
     direction = self._refracted_direction(ray, position)
     if direction is None:
         return None
     return Ray(ray.dim, position, direction)
Пример #2
0
def show_two_dim_render_demo():
    ray = Ray(2, np.array([3, 6]), np.array([-1, -7]))
    plane = Plane(2, 1.4, 1, np.array([-6, -1]), np.array([-2, -2]))
    two_dim_render.plane_render(ray, plane)

    r1 = Ray(2, np.array([-2, 2]), np.array([1, 1]))
    r2 = Ray(2, np.array([7, 5]), np.array([1, 2]))
    sphere1 = Sphere(2, 1, 1.8, np.array([5, 6]), 4.3)
    two_dim_render.sphere_render(r1, sphere1, 100)

    sphere2 = Sphere(2, 1, 1.8, np.array([5, 6]), 4)
    two_dim_render.sphere_render(r2, sphere2, 100)

    ellipse1 = Ellipse(2, 1.2, 1, np.array([5, 6]), np.array([60, 30]))
    two_dim_render.ellipse_render(r1, ellipse1, 300)

    ellipse2 = Ellipse(2, 1.2, 1, np.array([15, 25]), np.array([6, 10]))
    two_dim_render.ellipse_render(r2, ellipse2, 200)
Пример #3
0
 def intersection_position(self, ray: Ray) -> Optional[np.ndarray]:
     pc = ray.position - self.center
     a = 1
     b = 2*np.dot(pc, ray.direction)
     c = np.dot(pc, pc) - self.radius**2
     t1, t2 = np.roots([a, b, c])
     min_t = min(t1, t2)
     t = min_t if min_t >= 10**-10 else max(t1, t2)
     return ray.point(t) if super().valid_t(t) else None
Пример #4
0
 def intersection_position(self, ray: Ray) -> Optional[np.ndarray]:
     md = self.m.dot(ray.direction)
     mpc = self.m.dot(ray.position - self.center)
     a = md.dot(md)
     b = 2*md.dot(mpc)
     c = mpc.dot(mpc) - self.semi_axes.prod()**2
     t1, t2 = np.roots([a, b, c])
     min_t = min(t1, t2)
     t = min_t if min_t >= 10**-10 else max(t1, t2)
     return ray.point(t) if super().valid_t(t) else None
Пример #5
0
def _draw_ray(ax: Axes3D,
              ray: Ray,
              length: float,
              color: str = "blue",
              line_style: str = "-",
              label: str = None):
    end_point = ray.point(length)
    x = np.array([ray.position[0], end_point[0]])
    y = np.array([ray.position[1], end_point[1]])
    z = np.array([ray.position[2], end_point[2]])
    ax.plot(x, y, z, color=color, linestyle=line_style, label=label)
Пример #6
0
def three_d_plane():
    ray = Ray(3, np.array([4, 1, -10]), np.array([0, 1, 1]))
    plane = Plane(3, 1, 2, np.array([5, 5, 10]), np.array([0, 0, 1]))
    three_dim_render.plane_render(ray,
                                  plane,
                                  figsize=(7, 7),
                                  plane_length=30,
                                  ray_length=30,
                                  normal_length=30,
                                  xlim=(-15, 35),
                                  ylim=(-15, 35),
                                  zlim=(-10, 60))
Пример #7
0
def three_d_ellipse():
    ray = Ray(3, np.array([0, 5, 0]), np.array([-1.3, 1, 0.5]))
    ellipse = Ellipse(3, 1.23, 1, np.array([0, 0, 0]), np.array([12, 30, 12]))
    three_dim_render.ellipse_render(ray,
                                    ellipse,
                                    100,
                                    sphere_color="#470180",
                                    ray_color="#0245d4",
                                    reflected_color="#ffc400",
                                    refracted_color="#ff0000",
                                    ray_length=20,
                                    figsize=(7, 7),
                                    xlim=(-30, 30),
                                    ylim=(-30, 30),
                                    zlim=(-30, 30))
Пример #8
0
def three_d_sphere():
    ray = Ray(3, np.array([0, 5, 0]), np.array([-1.3, 1, 0.5]))
    sphere = Sphere(3, 1.23, 1, np.array([0, 0, 0]), 20)
    three_dim_render.sphere_render(ray,
                                   sphere,
                                   100,
                                   sphere_color="#470180",
                                   ray_color="#0245d4",
                                   reflected_color="#ffc400",
                                   refracted_color="#ff0000",
                                   ray_length=20,
                                   figsize=(7, 7),
                                   xlim=(-30, 30),
                                   ylim=(-30, 30),
                                   zlim=(-30, 30))
Пример #9
0
def three_d_multiple_plane():
    ray_point = np.array([0, 0, 70])
    plane = Plane(3, 1.230, 1, np.array([0, 0, 10]), np.array([0, 0, 1]))
    ray_direction = np.array([40, 40, -100])
    rays = [
        Ray(3, ray_point,
            transform3d_z(i).dot(ray_direction))
        for i in np.linspace(0, 2 * np.pi, 150)
    ]
    three_dim_render.multiple_rays_plane_render(rays,
                                                plane,
                                                figsize=(7, 7),
                                                plane_length=70,
                                                ray_length=40,
                                                xlim=(-60, 60),
                                                ylim=(-60, 60),
                                                zlim=(-20, 100))
def _ray_coords(ray: Ray, length: float = 5) -> Tuple[list, list]:
    end_point = ray.point(length)
    return [ray.position[0], end_point[0]], [ray.position[1], end_point[1]]
Пример #11
0
 def intersection_position(self, ray: Ray) -> Optional[np.ndarray]:
     t = np.dot(self.n, self.position - ray.position) / \
         np.dot(self.n, ray.direction)
     return ray.point(t) if super().valid_t(t) else None
Пример #12
0
def _get_normal_rays(normal: np.ndarray,
                     position: np.ndarray) -> Tuple[Ray, Ray]:
    return (
        Ray(3, position, normal),
        Ray(3, position, -normal),
    )
Пример #13
0
def _get_orthogonal_rays(point: np.array,
                         normal: np.array) -> Tuple[Ray, Ray, Ray, Ray]:
    first, second, third, fourth = _get_orthogonal_directions(normal)
    return (Ray(3, point, first), Ray(3, point, second), Ray(3, point, third),
            Ray(3, point, fourth))