Пример #1
0
	def crop_face(self,image_data):
		image_batch = image_data
		files = []
		face_detect = face_detection_model('/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml')
		face_files = face_detect.run(image_data)
		#print(face_files)
		return face_files
Пример #2
0
    def __init__(self, wait=0.0):
        image_topic = "/hsrb/head_rgbd_sensor/rgb/image_rect_color"
        rospy.Subscriber(image_topic, Image, self.image_callback)
        s = rospy.Service('/face_recognition_run', face_recognition_srv,
                          self.Isrunnging)
        DATA_DIR = abspath(join(dirname(__file__), 'known_faces'))
        self.string_pub = rospy.Publisher('/face_detected_name',
                                          String,
                                          queue_size=10)
        self.bridge = CvBridge()
        self.path = exists("known_faces")
        print self.path
        self.takepicture = False
        self.threshold = 0.6
        self.known_folder = DATA_DIR
        self.known_imgs = [
            f for f in listdir(self.known_folder)
            if isfile(join(self.known_folder, f))
        ]
        print self.known_imgs
        self.known_img_names = []
        self.known_encodings = []
        self.count = 0
        self.unknowncount = 0
        self.Isrecognized = False
        self.detected_name = "unknown"
        self.detection_model = face_detection_model(
            '/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml'
        )

        for img_name in self.known_imgs:
            img = face_recognition.load_image_file(self.known_folder + '/' +
                                                   img_name)
            print img_name
            self.known_encodings.append(
                face_recognition.face_encodings(img)[0])
            dot_idx = img_name.rfind('.')
            name = img_name[0:dot_idx]
            self.known_img_names.append(name)