Пример #1
0
def train(datasource,
          select,
          model_params,
          train_params,
          feature_metas,
          feature_column_names,
          label_meta,
          validation_select,
          disk_cache=False,
          batch_size=None,
          epoch=1,
          load_pretrained_model=False,
          is_pai=False,
          pai_train_table="",
          pai_validate_table="",
          rank=0,
          nworkers=1,
          oss_model_dir="",
          transform_fn=None,
          feature_column_code="",
          model_repo_image="",
          original_sql=""):
    if batch_size == -1:
        batch_size = None
    print("Start training XGBoost model...")
    dtrain = xgb_dataset(datasource,
                         'train.txt',
                         select,
                         feature_metas,
                         feature_column_names,
                         label_meta,
                         is_pai,
                         pai_train_table,
                         cache=disk_cache,
                         batch_size=batch_size,
                         epoch=epoch,
                         rank=rank,
                         nworkers=nworkers,
                         transform_fn=transform_fn,
                         feature_column_code=feature_column_code)
    if len(validation_select.strip()) > 0:
        dvalidate = list(
            xgb_dataset(datasource,
                        'validate.txt',
                        validation_select,
                        feature_metas,
                        feature_column_names,
                        label_meta,
                        is_pai,
                        pai_validate_table,
                        rank=rank,
                        nworkers=nworkers,
                        transform_fn=transform_fn,
                        feature_column_code=feature_column_code))[0]

    filename = "my_model"
    if load_pretrained_model:
        bst = xgb.Booster()
        bst.load_model(filename)
    else:
        bst = None

    re = None
    for per_batch_dmatrix in dtrain:
        watchlist = [(per_batch_dmatrix, "train")]
        if len(validation_select.strip()) > 0:
            watchlist.append((dvalidate, "validate"))

        re = dict()
        bst = xgb.train(model_params,
                        per_batch_dmatrix,
                        evals=watchlist,
                        evals_result=re,
                        xgb_model=bst,
                        **train_params)
        print("Evaluation result: %s" % re)

    if rank == 0:
        # TODO(sneaxiy): collect features and label
        metadata = collect_metadata(original_sql=original_sql,
                                    select=select,
                                    validation_select=validation_select,
                                    model_repo_image=model_repo_image,
                                    class_name=model_params.get("booster"),
                                    attributes=model_params,
                                    features=None,
                                    label=None,
                                    evaluation=re)
        save_model_to_local_file(bst, model_params, filename)
        save_metadata("model_meta.json", metadata)
        if is_pai and len(oss_model_dir) > 0:
            save_model(oss_model_dir, filename, model_params, train_params,
                       feature_metas, feature_column_names, label_meta,
                       feature_column_code)
Пример #2
0
def train(datasource,
          estimator_string,
          select,
          validation_select,
          feature_columns,
          feature_column_names,
          feature_metas={},
          label_meta={},
          model_params={},
          validation_metrics=["Accuracy"],
          save="",
          batch_size=1,
          epoch=1,
          validation_steps=1,
          verbose=0,
          max_steps=None,
          validation_start_delay_secs=0,
          validation_throttle_secs=0,
          save_checkpoints_steps=100,
          log_every_n_iter=10,
          load_pretrained_model=False,
          is_pai=True,
          pai_table="",
          pai_val_table="",
          feature_columns_code="",
          model_params_code_map={},
          model_repo_image="",
          original_sql="",
          feature_column_names_map=None):
    # TODO(sneaxiy): collect features and label
    model_meta = collect_metadata(original_sql=original_sql,
                                  select=select,
                                  validation_select=validation_select,
                                  model_repo_image=model_repo_image,
                                  class_name=estimator_string,
                                  attributes=model_params,
                                  features=None,
                                  label=None)
    estimator = import_model(estimator_string)
    is_estimator = is_tf_estimator(estimator)

    if verbose < 1:  # always use verbose == 1 when using PAI to get more logs
        verbose = 1
    set_log_level(verbose, is_estimator)
    model_params.update(feature_columns)

    FLAGS = define_tf_flags()
    set_oss_environs(FLAGS)
    num_workers = len(FLAGS.worker_hosts.split(","))
    worker_id = FLAGS.task_index

    train_dataset_fn = get_dataset_fn(select,
                                      datasource,
                                      feature_column_names,
                                      feature_metas,
                                      label_meta,
                                      is_pai,
                                      pai_table,
                                      batch_size,
                                      epochs=epoch,
                                      shuffle_size=1000,
                                      num_workers=num_workers,
                                      worker_id=worker_id)
    val_dataset_fn = None
    if validation_select:
        val_dataset_fn = get_dataset_fn(validation_select, datasource,
                                        feature_column_names, feature_metas,
                                        label_meta, is_pai, pai_val_table,
                                        batch_size)

    if not is_estimator:
        if isinstance(estimator, types.FunctionType):
            # functional model need field_metas parameter
            model_params["field_metas"] = feature_metas
        keras_train_and_save(estimator, model_params, save, FLAGS,
                             train_dataset_fn, val_dataset_fn, label_meta,
                             epoch, verbose, validation_metrics,
                             validation_steps, load_pretrained_model,
                             model_meta)
    else:
        estimator_train_and_save(estimator, model_params, save, FLAGS,
                                 train_dataset_fn, val_dataset_fn,
                                 log_every_n_iter, max_steps,
                                 validation_start_delay_secs,
                                 validation_throttle_secs,
                                 save_checkpoints_steps, validation_metrics,
                                 load_pretrained_model, model_meta)

    # save model to OSS
    if num_workers == 1 or worker_id == 0:
        oss_model_dir = FLAGS.sqlflow_oss_modeldir
        oss.save_oss_model(oss_model_dir, estimator_string, is_estimator,
                           feature_column_names, feature_column_names_map,
                           feature_metas, label_meta, model_params_code_map,
                           feature_columns_code, num_workers)
        print("Model saved to oss: %s" % oss_model_dir)
    print("Done training")
Пример #3
0
def train(datasource,
          estimator_string,
          select,
          validation_select,
          feature_columns,
          feature_column_names,
          feature_metas={},
          label_meta={},
          model_params={},
          validation_metrics=["Accuracy"],
          save="",
          batch_size=1,
          epoch=1,
          validation_steps=1,
          verbose=0,
          max_steps=None,
          validation_start_delay_secs=0,
          validation_throttle_secs=0,
          save_checkpoints_steps=100,
          log_every_n_iter=10,
          load_pretrained_model=False,
          is_pai=False,
          pai_table="",
          pai_val_table="",
          feature_columns_code="",
          model_params_code_map={},
          model_repo_image="",
          original_sql="",
          feature_column_names_map=None):
    # NOTE(typhoonzero): feature_column_names_map is used only for PAI
    # submitter API.

    # TODO(sneaxiy): collect features and label
    model_meta = collect_metadata(original_sql=original_sql,
                                  select=select,
                                  validation_select=validation_select,
                                  model_repo_image=model_repo_image,
                                  class_name=estimator_string,
                                  attributes=model_params,
                                  features=None,
                                  label=None)
    estimator = import_model(estimator_string)
    is_estimator = is_tf_estimator(estimator)
    set_log_level(verbose, is_estimator)
    model_params.update(feature_columns)

    train_dataset_fn = get_dataset_fn(select,
                                      datasource,
                                      feature_column_names,
                                      feature_metas,
                                      label_meta,
                                      is_pai,
                                      pai_table,
                                      batch_size,
                                      epochs=epoch,
                                      shuffle_size=1000)
    val_dataset_fn = None
    if validation_select:
        val_dataset_fn = get_dataset_fn(validation_select, datasource,
                                        feature_column_names, feature_metas,
                                        label_meta, is_pai, pai_val_table,
                                        batch_size)

    if not is_estimator:  # keras
        if isinstance(estimator, types.FunctionType):
            # functional model need field_metas parameter
            model_params["field_metas"] = feature_metas
        keras_train_and_save(estimator, model_params, save, is_pai,
                             train_dataset_fn, val_dataset_fn, label_meta,
                             epoch, verbose, validation_metrics,
                             validation_steps, load_pretrained_model,
                             model_meta)
    else:
        estimator_train_and_save(estimator, model_params, save,
                                 train_dataset_fn, val_dataset_fn, max_steps,
                                 validation_start_delay_secs,
                                 validation_throttle_secs,
                                 save_checkpoints_steps, validation_metrics,
                                 load_pretrained_model, model_meta)

    # remove cache files
    any(map(os.remove, glob.glob('cache_train.*')))
    any(map(os.remove, glob.glob('cache_validation.*')))
    print("Done training")
Пример #4
0
def local_train(original_sql,
                model_image,
                estimator_string,
                datasource,
                select,
                validation_select,
                model_params,
                train_params,
                feature_metas,
                feature_column_names,
                feature_column_map,
                label_column,
                transform_fn,
                save,
                load="",
                is_pai=False,
                oss_model_dir=""):
    disk_cache = train_params.pop("disk_cache", False)
    batch_size = train_params.pop("batch_size", None)
    if batch_size is not None and batch_size < 0:
        batch_size = None

    epoch = train_params.pop("epoch", 1)
    num_workers = train_params.pop("num_workers", 1)
    label_meta_dict = label_column.get_field_desc()[0].to_dict(
        dtype_to_string=True)

    def build_dataset(fn, slct):
        return xgb_dataset(datasource,
                           fn,
                           slct,
                           feature_metas,
                           feature_column_names,
                           label_meta_dict,
                           cache=disk_cache,
                           batch_size=batch_size,
                           epoch=epoch,
                           transform_fn=transform_fn)

    file_name = "my_model"
    if load:
        Model.load_from_db(datasource, load)
        bst = xgb.Booster()
        bst.load_model(file_name)
    else:
        bst = None

    with temp_file.TemporaryDirectory() as tmp_dir_name:
        train_fn = os.path.join(tmp_dir_name, 'train.txt')
        val_fn = os.path.join(tmp_dir_name, 'val.txt')
        train_dataset = build_dataset(train_fn, select)
        if validation_select:
            val_dataset = build_dataset(val_fn, validation_select)
        else:
            val_dataset = None

        eval_result = dict()
        watchlist = [None]
        if val_dataset:
            # The `xgboost.train` API only accepts the XGBoost DMatrix
            # object as the training or validation dataset, so we should
            # convert the generator to DMatrix.
            if isinstance(val_dataset, types.GeneratorType):
                val_dataset = list(val_dataset)[0]
            watchlist.append((val_dataset, "validate"))

        for per_batch_dmatrix in train_dataset:
            watchlist[0] = (per_batch_dmatrix, "train")
            bst = xgb.train(model_params,
                            per_batch_dmatrix,
                            evals=watchlist,
                            evals_result=eval_result,
                            xgb_model=bst,
                            **train_params)
            print("Evaluation result: %s" % eval_result)

    meta = collect_metadata(original_sql=original_sql,
                            select=select,
                            validation_select=validation_select,
                            model_repo_image=model_image,
                            class_name=estimator_string,
                            attributes=model_params,
                            features=feature_column_map,
                            label=label_column,
                            evaluation=eval_result,
                            num_workers=num_workers)

    save_model_to_local_file(bst, model_params, file_name)
    model = Model(EstimatorType.XGBOOST, meta)
    model.save_to_db(datasource, save)
    if is_pai and len(oss_model_dir) > 0:
        # TODO(typhoonzero): remove this since we are saving metas into db now.
        save_model(oss_model_dir, "my_model", model_params, train_params,
                   feature_metas, feature_column_names, label_meta_dict,
                   feature_column_map)

    return eval_result
Пример #5
0
def train(original_sql,
          model_image,
          estimator_string,
          datasource,
          select,
          validation_select,
          model_params,
          train_params,
          feature_column_map,
          label_column,
          save,
          load=None):
    """
    Train, evaluate and save the XGBoost model locally.

    Args:
        original_sql (str): the original SQL statement.
        model_image (str): the model repo docker image.
        estimator (str): the XGBoost booster type like xgboost.gbtree.
        datasource (str): the database connection URI.
        select (str): the SQL statement for training.
        validation_select (str): the SQL statement for evaluation.
        model_params (dict): the XGBoost model parameters.
        train_params (dict): the training parameters, can have
                             disk_cache(bool), batch_size(int), epoch(int)
                             settings in the dict.
        feature_column_map (dict): the feature column map to do derivation.
        label_column (FeatureColumn): the label column.
        save (str): the table name to save the trained model and meta.
        load (str): the table name to load the pretrained model.

    Returns:
        A dict which indicates the evaluation result.
    """
    conn = db.connect_with_data_source(datasource)
    fc_map_ir, fc_label_ir = infer_feature_columns(conn,
                                                   select,
                                                   feature_column_map,
                                                   label_column,
                                                   n=1000)
    fc_map = compile_ir_feature_columns(fc_map_ir, EstimatorType.XGBOOST)

    feature_column_list = fc_map["feature_columns"]
    field_descs = get_ordered_field_descs(fc_map_ir)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict()) for fd in field_descs])
    label_meta = label_column.get_field_desc()[0].to_dict()

    # NOTE: in the current implementation, we are generating a transform_fn
    # from the COLUMN clause. The transform_fn is executed during the process
    # of dumping the original data into DMatrix SVM file.
    transform_fn = xgboost_extended.feature_column.ComposedColumnTransformer(
        feature_column_names, *feature_column_list)

    disk_cache = False
    batch_size = None
    epoch = 1
    if "disk_cache" in train_params:
        disk_cache = train_params.pop("disk_cache")
    if "batch_size" in train_params:
        batch_size = train_params.pop("batch_size")
    if "epoch" in train_params:
        epoch = train_params.pop("epoch")

    def build_dataset(fn, slct):
        return xgb_dataset(datasource,
                           fn,
                           slct,
                           feature_metas,
                           feature_column_names,
                           label_meta,
                           cache=disk_cache,
                           batch_size=batch_size,
                           epoch=epoch,
                           transform_fn=transform_fn)

    file_name = "my_model"
    if load:
        Model.load_from_db(datasource, load)
        bst = xgb.Booster()
        bst.load_model(file_name)
    else:
        bst = None

    with temp_file.TemporaryDirectory() as tmp_dir_name:
        train_fn = os.path.join(tmp_dir_name, 'train.txt')
        val_fn = os.path.join(tmp_dir_name, 'val.txt')
        train_dataset = build_dataset(train_fn, select)
        if validation_select:
            val_dataset = build_dataset(val_fn, validation_select)
        else:
            val_dataset = None

        eval_result = dict()
        watchlist = [None]
        if val_dataset:
            # The `xgboost.train` API only accepts the XGBoost DMatrix
            # object as the training or validation dataset, so we should
            # convert the generator to DMatrix.
            if isinstance(val_dataset, types.GeneratorType):
                val_dataset = list(val_dataset)[0]
            watchlist.append((val_dataset, "validate"))

        for per_batch_dmatrix in train_dataset:
            watchlist[0] = (per_batch_dmatrix, "train")
            bst = xgb.train(model_params,
                            per_batch_dmatrix,
                            evals=watchlist,
                            evals_result=eval_result,
                            xgb_model=bst,
                            **train_params)
            print("Evaluation result: %s" % eval_result)

    meta = collect_metadata(original_sql=original_sql,
                            select=select,
                            validation_select=validation_select,
                            model_repo_image=model_image,
                            class_name=estimator_string,
                            attributes=model_params,
                            features=fc_map_ir,
                            label=fc_label_ir,
                            evaluation=eval_result,
                            num_workers=1)

    save_model_to_local_file(bst, model_params, file_name)
    model = Model(EstimatorType.XGBOOST, meta)
    model.save_to_db(datasource, save)
    return eval_result
Пример #6
0
def train_step(original_sql,
               model_image,
               estimator_string,
               datasource,
               select,
               validation_select,
               model_params,
               train_params,
               validation_params,
               feature_column_map,
               label_column,
               save,
               load=None,
               pai_table=None,
               pai_val_table=None):
    if model_params is None:
        model_params = {}

    if train_params is None:
        train_params = {}

    if validation_params is None:
        validation_params = {}

    if load:
        Model.load_from_db(datasource, load)
        load = "model_save"
    else:
        load = None

    is_pai = True if pai_table else False

    fc_map = compile_ir_feature_columns(feature_column_map,
                                        EstimatorType.TENSORFLOW)
    field_descs = get_ordered_field_descs(feature_column_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])

    # no label for clustering model
    label_meta = None
    if label_column:
        label_meta = label_column.get_field_desc()[0].to_dict(
            dtype_to_string=True)

    feature_column_names_map = dict()
    for target in feature_column_map:
        fclist = feature_column_map[target]
        feature_column_names_map[target] = [
            fc.get_field_desc()[0].name for fc in fclist
        ]

    # Construct optimizer objects to pass to model initializer.
    # The original model_params is serializable (do not have tf.xxx objects).
    model_params_constructed = copy.deepcopy(model_params)
    for optimizer_arg in ["optimizer", "dnn_optimizer", "linear_optimizer"]:
        if optimizer_arg in model_params_constructed:
            model_params_constructed[optimizer_arg] = get_tf_optimizer(
                model_params_constructed[optimizer_arg])

    if "loss" in model_params_constructed:
        model_params_constructed["loss"] = get_tf_loss(
            model_params_constructed["loss"])

    # extract params for training.
    verbose = train_params.get("verbose", 1)
    batch_size = train_params.get("batch_size", 1)
    epoch = train_params.get("epoch", 1)
    save_checkpoints_steps = train_params.get("save_checkpoints_steps", 100)
    max_steps = train_params.get("max_steps", None)
    if max_steps is not None and max_steps <= 0:
        max_steps = None

    validation_metrics = validation_params.get("metrics", "Accuracy")
    validation_metrics = [v.strip() for v in validation_metrics.split(",")]
    validation_steps = validation_params.get("steps", 1)
    validation_start_delay_secs = validation_params.get("start_delay_secs", 0)
    validation_throttle_secs = validation_params.get("throttle_secs", 0)

    estimator = import_model(estimator_string)
    is_estimator = is_tf_estimator(estimator)

    # always use verbose == 1 when using PAI to get more logs
    if verbose < 1:
        verbose = 1
    set_log_level(verbose, is_estimator)

    model_params_constructed.update(fc_map)

    FLAGS = define_tf_flags()
    set_oss_environs(FLAGS)
    num_workers = len(FLAGS.worker_hosts.split(","))
    worker_id = FLAGS.task_index

    train_dataset_fn = get_dataset_fn(select,
                                      datasource,
                                      feature_column_names,
                                      feature_metas,
                                      label_meta,
                                      is_pai,
                                      pai_table,
                                      batch_size,
                                      epochs=epoch,
                                      shuffle_size=1000,
                                      num_workers=num_workers,
                                      worker_id=worker_id)
    val_dataset_fn = None
    if validation_select or pai_val_table:
        val_dataset_fn = get_dataset_fn(validation_select, datasource,
                                        feature_column_names, feature_metas,
                                        label_meta, is_pai, pai_val_table,
                                        batch_size)

    model_meta = collect_metadata(original_sql=original_sql,
                                  select=select,
                                  validation_select=validation_select,
                                  model_repo_image=model_image,
                                  class_name=estimator_string,
                                  attributes=model_params,
                                  features=feature_column_map,
                                  label=label_column)

    # FIXME(typhoonzero): avoid save model_meta twice, keras_train_and_save,
    # estimator_train_and_save also dumps model_meta to a file under cwd.
    # should only keep the model.save_to_db part.
    save_dir = "model_save"
    if not is_estimator:
        if isinstance(estimator, types.FunctionType):
            # functional model need field_metas parameter
            model_params_constructed["field_metas"] = feature_metas
        keras_train_and_save(estimator, model_params_constructed, save_dir,
                             FLAGS, train_dataset_fn, val_dataset_fn,
                             label_meta, epoch, verbose, validation_metrics,
                             validation_steps, load, model_meta, is_pai)
    else:
        estimator_train_and_save(estimator, model_params_constructed, save_dir,
                                 FLAGS, train_dataset_fn, val_dataset_fn,
                                 max_steps, validation_start_delay_secs,
                                 validation_throttle_secs,
                                 save_checkpoints_steps, validation_metrics,
                                 load, model_meta)

    # save model to DB/OSS
    model = Model(EstimatorType.TENSORFLOW, model_meta)
    if num_workers == 1 or worker_id == 0:
        saved = model.save_to_db(datasource,
                                 save,
                                 oss_model_dir=FLAGS.sqlflow_oss_modeldir)
        print("Model saved to DB: %s" % saved)

    print("Done training")