Пример #1
0
    def predict(self, pen):
        """Return the optimal breakpoints.

        Must be called after the fit method. The breakpoints are associated with the signal passed
        to [`fit()`][ruptures.detection.pelt.Pelt.fit].

        Args:
            pen (float): penalty value (>0)

        Raises:
            BadSegmentationParameters: in case of impossible segmentation
                configuration

        Returns:
            list: sorted list of breakpoints
        """
        # raise an exception in case of impossible segmentation configuration
        if not sanity_check(
            n_samples=self.cost.signal.shape[0],
            n_bkps=1,
            jump=self.jump,
            min_size=self.min_size,
        ):
            raise BadSegmentationParameters

        partition = self._seg(pen)
        bkps = sorted(e for s, e in partition.keys())
        return bkps
Пример #2
0
    def predict(self, n_bkps=None, pen=None, epsilon=None):
        """Return the optimal breakpoints.

        Must be called after the fit method. The breakpoints are associated with the
        signal passed to [`fit()`][ruptures.detection.binseg.Binseg.fit].
        The stopping rule depends on the parameter passed to the function.

        Args:
            n_bkps (int): number of breakpoints to find before stopping.
            pen (float): penalty value (>0)
            epsilon (float): reconstruction budget (>0)

        Raises:
            AssertionError: if none of `n_bkps`, `pen`, `epsilon` is set.
            BadSegmentationParameters: in case of impossible segmentation
                configuration

        Returns:
            list: sorted list of breakpoints
        """
        msg = "Give a parameter."
        assert any(param is not None for param in (n_bkps, pen, epsilon)), msg

        # raise an exception in case of impossible segmentation configuration
        if not sanity_check(
            n_samples=self.cost.signal.shape[0],
            n_bkps=1,
            jump=self.jump,
            min_size=self.min_size,
        ):
            raise BadSegmentationParameters

        partition = self._seg(n_bkps=n_bkps, pen=pen, epsilon=epsilon)
        bkps = sorted(e for s, e in partition.keys())
        return bkps
Пример #3
0
    def predict(self, n_bkps):
        """Return the optimal breakpoints.

        Must be called after the fit method. The breakpoints are associated with the signal passed
        to [`fit()`][ruptures.detection.dynp.Dynp.fit].

        Args:
            n_bkps (int): number of breakpoints.

        Raises:
            BadSegmentationParameters: in case of impossible segmentation
                configuration

        Returns:
            list: sorted list of breakpoints
        """
        # raise an exception in case of impossible segmentation configuration
        if not sanity_check(
                n_samples=self.cost.signal.shape[0],
                n_bkps=n_bkps,
                jump=self.jump,
                min_size=self.min_size,
        ):
            raise BadSegmentationParameters
        partition = self.seg(0, self.n_samples, n_bkps)
        bkps = sorted(e for s, e in partition.keys())
        return bkps
Пример #4
0
    def _seg(self, start, end, n_bkps):
        """Recurrence to find the optimal partition of signal[start:end].

        This method is to be memoized and then used.

        Args:
            start (int): start of the segment (inclusive)
            end (int): end of the segment (exclusive)
            n_bkps (int): number of breakpoints

        Returns:
            dict: {(start, end): cost value, ...}
        """
        jump, min_size = self.jump, self.min_size

        if n_bkps == 0:
            cost = self.cost.error(start, end)
            return {(start, end): cost}
        elif n_bkps > 0:
            # Let's fill the list of admissible last breakpoints
            multiple_of_jump = (k for k in range(start, end) if k % jump == 0)
            admissible_bkps = list()
            for bkp in multiple_of_jump:
                n_samples = bkp - start
                # first check if left subproblem is possible
                if sanity_check(n_samples, n_bkps, jump, min_size):
                    # second check if the right subproblem has enough points
                    if end - bkp >= min_size:
                        admissible_bkps.append(bkp)

            assert len(
                admissible_bkps) > 0, "No admissible last breakpoints found.\
             start, end: ({},{}), n_bkps: {}.".format(start, end, n_bkps)

            # Compute the subproblems
            sub_problems = list()
            for bkp in admissible_bkps:
                left_partition = self.seg(start, bkp, n_bkps - 1)
                right_partition = self.seg(bkp, end, 0)
                tmp_partition = dict(left_partition)
                tmp_partition[(bkp, end)] = right_partition[(bkp, end)]
                sub_problems.append(tmp_partition)

            #---------NEW PART----------from here
            #number of cost functions used in an ensemble
            number_of_costs = len(tmp_partition[(bkp, end)])
            #ensembling
            array = np.array([[
                sum([i[cost_number] for i in sub_pr.values()])
                for cost_number in range(number_of_costs)
            ] for sub_pr in sub_problems])

            # Find the optimal partition
            return sub_problems[np.argmin(
                selected_aggregation(self.ensembling)(array))]
Пример #5
0
    def _seg(self, start, end, n_bkps):
        """Recurrence to find the optimal partition of signal[start:end].

        This method is to be memoized and then used.

        Args:
            start (int): start of the segment (inclusive)
            end (int): end of the segment (exclusive)
            n_bkps (int): number of breakpoints

        Returns:
            dict: {(start, end): cost value, ...}
        """
        jump, min_size = self.jump, self.min_size

        if n_bkps == 0:
            cost = self.cost.error(start, end)
            return {(start, end): cost}
        elif n_bkps > 0:
            # Let's fill the list of admissible last breakpoints
            multiple_of_jump = (k for k in range(start, end) if k % jump == 0)
            admissible_bkps = list()
            for bkp in multiple_of_jump:
                n_samples = bkp - start
                # first check if left subproblem is possible
                if sanity_check(
                        n_samples=n_samples,
                        n_bkps=n_bkps - 1,
                        jump=jump,
                        min_size=min_size,
                ):
                    # second check if the right subproblem has enough points
                    if end - bkp >= min_size:
                        admissible_bkps.append(bkp)

            assert (len(admissible_bkps) >
                    0), "No admissible last breakpoints found.\
             start, end: ({},{}), n_bkps: {}.".format(start, end, n_bkps)

            # Compute the subproblems
            sub_problems = list()
            for bkp in admissible_bkps:
                left_partition = self.seg(start, bkp, n_bkps - 1)
                right_partition = self.seg(bkp, end, 0)
                tmp_partition = dict(left_partition)
                tmp_partition[(bkp, end)] = right_partition[(bkp, end)]
                sub_problems.append(tmp_partition)

            # Find the optimal partition
            return min(sub_problems, key=lambda d: sum(d.values()))
Пример #6
0
    def predict(self, n_bkps=None, pen=None):
        """Return the optimal breakpoints. Must be called after the fit method.

        The breakpoints are associated with the signal passed to
        [`fit()`][ruptures.detection.kernelcpd.KernelCPD.fit].

        Args:
            n_bkps (int, optional): Number of change points. Defaults to None.
            pen (float, optional): penalty value (>0). Defaults to None. Not considered
                if n_bkps is not None.

        Raises:
            AssertionError: if `pen` or `n_bkps` is not strictly positive.
            BadSegmentationParameters: in case of impossible segmentation
                configuration

        Returns:
            list[int]: sorted list of breakpoints
        """
        # raise an exception in case of impossible segmentation configuration
        if not sanity_check(
                n_samples=self.cost.signal.shape[0],
                n_bkps=1 if n_bkps is None else n_bkps,
                jump=self.jump,
                min_size=self.min_size,
        ):
            raise BadSegmentationParameters

        # dynamic programming if the user passed a number change points
        if n_bkps is not None:
            n_bkps = int(n_bkps)
            err_msg = "The number of changes must be positive: {}".format(
                n_bkps)
            assert n_bkps > 0, err_msg
            # if we have already computed it, return it without computations.
            if n_bkps in self.segmentations_dict:
                return self.segmentations_dict[n_bkps]
            # otherwise, call the C function
            if self.kernel_name == "linear":
                path_matrix_flat = ekcpd_L2(self.cost.signal, n_bkps,
                                            self.min_size)
            elif self.kernel_name == "rbf":
                path_matrix_flat = ekcpd_Gaussian(self.cost.signal, n_bkps,
                                                  self.min_size,
                                                  self.cost.gamma)
            elif self.kernel_name == "cosine":
                path_matrix_flat = ekcpd_cosine(self.cost.signal, n_bkps,
                                                self.min_size)
            # from the path matrix, get all segmentation for k=1,...,n_bkps changes
            for k in range(1, n_bkps + 1):
                self.segmentations_dict[k] = from_path_matrix_to_bkps_list(
                    path_matrix_flat, k, self.n_samples, n_bkps, self.jump)
            return self.segmentations_dict[n_bkps]

        # Call pelt if the user passed a penalty
        if pen is not None:
            assert pen > 0, "The penalty must be positive: {}".format(pen)
            if self.kernel_name == "linear":
                path_matrix = ekcpd_pelt_L2(self.cost.signal, pen,
                                            self.min_size)
            elif self.kernel_name == "rbf":
                path_matrix = ekcpd_pelt_Gaussian(self.cost.signal, pen,
                                                  self.min_size,
                                                  self.cost.gamma)
            elif self.kernel_name == "cosine":
                path_matrix = ekcpd_pelt_cosine(self.cost.signal, pen,
                                                self.min_size)

            my_bkps = list()
            ind = self.n_samples
            while ind > 0:
                my_bkps.append(ind)
                ind = path_matrix[ind]
            return my_bkps[::-1]