def _s2_ifft(x, for_grad, b_in, b_out): ''' :param x: [l * m, batch, complex] (b_in**2, nbatch, 2) :return: [batch, beta, alpha, complex] (nbatch, 2 b_out, 2 * b_out, 2) ''' device = x.get_device() nbatch = x.size(1) plan = _setup_fft_plan(b_out, nbatch) wigner = _setup_wigner( b_out, nl=b_in, weighted=for_grad, device=device) # [beta, l * m] (2 * b_out - 1, nspec) cuda_kernel = _setup_s2ifft_cuda_kernel(b=b_out, nl=b_in, nbatch=nbatch) stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) output = torch.cuda.FloatTensor(nbatch, 2 * b_out, 2 * b_out, 2) cuda_kernel(block=(1024, 1, 1), grid=(cuda_utils.get_blocks(nbatch * (2 * b_out)**2, 1024), 1, 1), args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()], stream=stream) # [batch, beta, m, complex] (nbatch, 2 * b_out, 2 * b_out, 2) plan(output, output, 1) # [batch, beta, alpha, complex] return output
def _s2_fft(x, for_grad, b_in, b_out): ''' this function performs in-place operations on x :param x: [batch, beta, alpha, complex] (nbatch, 2 * b_in, 2 * b_in, 2) :return: [l * m, batch, complex] (b_out**2, nbatch, 2) ''' device = x.get_device() nspec = b_out**2 nbatch = x.size(0) plan = _setup_fft_plan(b_in, nbatch) wigner = _setup_wigner(b_in, nl=b_out, weighted=not for_grad, device=device) cuda_kernel = _setup_s2fft_cuda_kernel(b=b_in, nspec=nspec, nbatch=nbatch) plan(x, x, -1) # [batch, beta, m, complex] stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) output = torch.cuda.FloatTensor(nspec, nbatch, 2) cuda_kernel(block=(1024, 1, 1), grid=(cuda_utils.get_blocks(nspec * nbatch, 1024), 1, 1), args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()], stream=stream) # [l * m, batch, complex] return output
def s2_mm(x, y): ''' :param x: [l * m, batch, feature_in, complex] :param y: [l * m, feature_in, feature_out, complex] :return: [l * m * n, batch, feature_out, complex] ''' assert y.size(3) == 2 assert x.size(3) == 2 nbatch = x.size(1) nfeature_in = x.size(2) nfeature_out = y.size(2) assert y.size(1) == nfeature_in assert y.size(0) == x.size(0) nl = round(x.size(0)**0.5) nspec = (4 * nl**2 - 1) * nl // 3 assert x.size(0) == nl**2 assert y.size(0) == nl**2 cuda_kernel = _setup_s2mm_cuda_kernel(nbatch=nbatch, nspec=nspec, nfeature_in=nfeature_in, nfeature_out=nfeature_out) stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) output = torch.cuda.FloatTensor(nspec, nbatch, nfeature_out, 2) cuda_kernel(block=(cuda_utils.CUDA_NUM_THREADS, 1, 1), grid=(cuda_utils.get_blocks(nspec * nbatch * nfeature_out, 1024), 1, 1), args=[x.data_ptr(), y.data_ptr(), output.data_ptr()], stream=stream) # [l * m * n, batch, feature_out, complex] return output
def backward(self, gradz): #pylint: disable=W x, y = self.saved_tensors nl = round(x.size(0)**0.5) nbatch = x.size(1) nfeature_in = x.size(2) nfeature_out = y.size(2) nspec = (4 * nl**2 - 1) * nl // 3 gradx_cuda_kernel = _setup_s2mm_gradx_cuda_kernel( nbatch=nbatch, nspec=nspec, nl=nl, nfeature_in=nfeature_in, nfeature_out=nfeature_out) grady_cuda_kernel = _setup_s2mm_grady_cuda_kernel( nbatch=nbatch, nspec=nspec, nl=nl, nfeature_in=nfeature_in, nfeature_out=nfeature_out) stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) gradx = grady = None if self.needs_input_grad[0]: gradx = torch.cuda.FloatTensor(nl**2, nbatch, nfeature_in, 2) gradx_cuda_kernel( block=(cuda_utils.CUDA_NUM_THREADS, 1, 1), grid=(cuda_utils.get_blocks(nl**2 * nbatch * nfeature_in, 1024), 1, 1), args=[gradz.data_ptr(), y.data_ptr(), gradx.data_ptr()], stream=stream) if self.needs_input_grad[1]: grady = torch.cuda.FloatTensor(nl**2, nfeature_in, nfeature_out, 2) grady_cuda_kernel( block=(cuda_utils.CUDA_NUM_THREADS, 1, 1), grid=(cuda_utils.get_blocks(nl**2 * nfeature_in * nfeature_out, 1024), 1, 1), args=[gradz.data_ptr(), x.data_ptr(), grady.data_ptr()], stream=stream) return gradx, grady
def _setup_so3ifft_cuda_kernel(b_in, b_out, nbatch, real_output): kernel = ''' #define B_IN {} #define B_OUT {} #define NSPEC {} #define NBATCH {} '''.format(b_in, b_out, b_in * (4 * b_in**2 - 1) // 3, nbatch) if real_output: kernel += ''' #define REAL_OUT ''' kernel += ''' #define MOD(i, n) (((i) + (n)) % (n)) #define MAX(x, y) ((x) < (y) ? (y) : (x)) #define CEIL_DIV(x, y) (((x) + (y) - 1) / (y)) extern "C" __global__ void main_(const float* in, const float* wig, float* out) { int m = (blockIdx.z / (2 * B_OUT - 1)) - (B_OUT - 1); int n = (blockIdx.z % (2 * B_OUT - 1)) - (B_OUT - 1); #ifdef REAL_OUT if (n < 0 || (n == 0 && m < 0)) { return; // note: this return does not depend on threadIdx } #endif int l_min = MAX(abs(m), abs(n)); int batch = blockIdx.y * 32 + threadIdx.y; float sum_re = 0.0; float sum_im = 0.0; for (int tile = 0; tile < CEIL_DIV(B_IN - l_min, 32); ++tile) { __shared__ float tileA[2][32][32]; __shared__ float tileB[32][32+1]; int l = l_min + tile * 32 + threadIdx.x; int lmn = (4 * l*l - 1) * l / 3 + (l+m) * (2 * l + 1) + (l+n); int i = (lmn * NBATCH + batch) * 2; tileA[0][threadIdx.y][threadIdx.x] = l < B_IN && batch < NBATCH ? in[i + 0] : 0.0; tileA[1][threadIdx.y][threadIdx.x] = l < B_IN && batch < NBATCH ? in[i + 1] : 0.0; int beta = blockIdx.x * 32 + threadIdx.y; tileB[threadIdx.x][threadIdx.y] = l < B_IN && beta < 2*B_OUT ? wig[beta * NSPEC + lmn] : 0.0; __syncthreads(); for (int l = 0; l < 32; ++l) { sum_re += tileA[0][threadIdx.y][l] * tileB[l][threadIdx.x]; sum_im += tileA[1][threadIdx.y][l] * tileB[l][threadIdx.x]; } __syncthreads(); } int beta = blockIdx.x * 32 + threadIdx.x; if (beta < 2*B_OUT && batch < NBATCH) { int i = (((batch * 2*B_OUT + beta) * 2*B_OUT + MOD(m, 2*B_OUT)) * 2*B_OUT + MOD(n, 2*B_OUT)) * 2; out[i + 0] = sum_re; out[i + 1] = sum_im; #ifdef REAL_OUT i = (((batch * 2*B_OUT + beta) * 2*B_OUT + MOD(-m, 2*B_OUT)) * 2*B_OUT + MOD(-n, 2*B_OUT)) * 2; out[i + 0] = sum_re; out[i + 1] = -sum_im; #endif } } ''' kernel = cuda_utils.compile_kernel(kernel, b'so3ifft.cu', 'main_') stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) def fun(x, wigner, output): output[:] = 0 kernel(block=(32, 32, 1), grid=(math.ceil(2 * b_out / 32), math.ceil(nbatch / 32), (2 * b_out - 1)**2), args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()], stream=stream) return fun
def _setup_so3fft_cuda_kernel(b_in, b_out, nbatch, real_input): kernel = ''' #define B_IN {} #define B_OUT {} #define NSPEC {} #define NBATCH {} '''.format(b_in, b_out, b_out * (4 * b_out**2 - 1) // 3, nbatch) if real_input: kernel += ''' #define REAL_IN ''' kernel += ''' #define MOD(i, n) (((i) + (n)) % (n)) #define MAX(x, y) ((x) < (y) ? (y) : (x)) #define CEIL_DIV(x, y) (((x) + (y) - 1) / (y)) extern "C" __global__ void main_(const float* in, const float* wig, float* out) { // blockIdx = (l, batch, mn) // blockDim = (32, 32, 1) // threadIdx = (sub l, sub batch, 0) // gridDim = (b / 32, nbatch / 32, (2b-1)**2) int m = (blockIdx.z / (2 * B_OUT - 1)) - (B_OUT - 1); int n = (blockIdx.z % (2 * B_OUT - 1)) - (B_OUT - 1); int l_min = MAX(abs(m), abs(n)); if (blockIdx.x * 32 + 31 < l_min) { // for blocks fully out of l-range return; // note: this return does not depend on threadIdx } #ifdef REAL_IN if (n < 0 || (n == 0 && m < 0)) { return; // note: this return does not depend on threadIdx } #endif int batch = blockIdx.y * 32 + threadIdx.y; int l = blockIdx.x * 32 + threadIdx.x; int lmn = (4 * l*l - 1) * l / 3 + (l+m) * (2 * l + 1) + (l+n); float sum_re = 0.0; float sum_im = 0.0; for (int tile = 0; tile < CEIL_DIV(2 * B_IN, 32); ++tile) { __shared__ float tileA[32][32][2]; __shared__ float tileB[32][32]; int beta = tile * 32 + threadIdx.x; #ifdef REAL_IN // `in` shape is (NBATCH, 2 * B_IN, 2 * B_IN, B_IN + 1, 2) // http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html int i = (((batch * 2*B_IN + beta) * 2*B_IN + MOD(m, 2*B_IN)) * (B_IN + 1) + n) * 2; #else int i = (((batch * 2*B_IN + beta) * 2*B_IN + MOD(m, 2*B_IN)) * 2*B_IN + MOD(n, 2*B_IN)) * 2; #endif tileA[threadIdx.y][threadIdx.x][0] = beta < 2*B_IN && batch < NBATCH ? in[i + 0] : 0.0; tileA[threadIdx.y][threadIdx.x][1] = beta < 2*B_IN && batch < NBATCH ? in[i + 1] : 0.0; beta = tile * 32 + threadIdx.y; tileB[threadIdx.y][threadIdx.x] = beta < 2*B_IN && l_min <= l && l < B_OUT ? wig[beta * NSPEC + lmn] : 0.0; __syncthreads(); for (int beta = 0; beta < 32; ++beta) { sum_re += tileA[threadIdx.y][beta][0] * tileB[beta][threadIdx.x]; sum_im += tileA[threadIdx.y][beta][1] * tileB[beta][threadIdx.x]; } __syncthreads(); } // About this if: some blocks are used to compute but not to save the results if (l_min <= l && l < B_OUT && batch < NBATCH) { out[(lmn * NBATCH + batch) * 2 + 0] = sum_re; out[(lmn * NBATCH + batch) * 2 + 1] = sum_im; #ifdef REAL_IN lmn = (4 * l*l - 1) * l / 3 + (l-m) * (2 * l + 1) + (l-n); float fudge = (m - n) % 2 == 0 ? 1.0 : -1.0; out[(lmn * NBATCH + batch) * 2 + 0] = fudge * sum_re; out[(lmn * NBATCH + batch) * 2 + 1] = -fudge * sum_im; #endif } } ''' kernel = cuda_utils.compile_kernel(kernel, b'so3fft.cu', 'main_') stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream) def fun(x, wigner, output): kernel(block=(32, 32, 1), grid=(math.ceil(b_out / 32), math.ceil(nbatch / 32), (2 * b_out - 1)**2), args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()], stream=stream) return fun