Пример #1
0
    def _prune_states(self, lattice_frame, maxrank, beamlogprob):
        """ Returns indices of the active states in `lattice_frame`
        after rank and beam pruning.
        """
        # Beam pruning
        threshlogprob = logsum(lattice_frame) + beamlogprob

        # Rank pruning
        if maxrank:
            # How big should our rank pruning histogram be?
            nbins = 3 * len(lattice_frame)

            lattice_min = lattice_frame[lattice_frame > ZEROLOGPROB].min() - 1
            hst, cdf = np.histogram(lattice_frame,
                                    bins=nbins,
                                    range=(lattice_min, lattice_frame.max()))

            # Want to look at the high ranks.
            hst = hst[::-1].cumsum()
            cdf = cdf[::-1]

            rankthresh = cdf[hst >= min(maxrank, self._n_states)].max()

            # Only change the threshold if it is stricter than the beam
            # threshold.
            threshlogprob = max(threshlogprob, rankthresh)

        # Which states are active?
        state_idx, = np.nonzero(lattice_frame >= threshlogprob)
        return state_idx
Пример #2
0
    def _do_forward_pass(self,
                         framelogprob,
                         maxrank=None,
                         beamlogprob=-np.Inf):
        nobs = len(framelogprob)
        fwdlattice = np.zeros((nobs, self._n_states))

        fwdlattice[0] = self._log_startprob + framelogprob[0]
        for n in range(1, nobs):
            idx = self._prune_states(fwdlattice[n - 1], maxrank, beamlogprob)
            fwdlattice[n] = (logsum(
                self._log_transmat[idx].T + fwdlattice[n - 1, idx], axis=1) +
                             framelogprob[n])
        fwdlattice[fwdlattice <= ZEROLOGPROB] = -np.Inf

        return logsum(fwdlattice[-1]), fwdlattice
Пример #3
0
 def _accumulate_sufficient_statistics(self, stats, seq, framelogprob,
                                       posteriors, fwdlattice, bwdlattice,
                                       params):
     stats['nobs'] += 1
     if 's' in params:
         stats['start'] += posteriors[0]
     if 't' in params:
         for t in range(len(framelogprob)):
             zeta = (fwdlattice[t - 1][:, np.newaxis] + self._log_transmat +
                     framelogprob[t] + bwdlattice[t])
             stats['trans'] += np.exp(zeta - logsum(zeta))
Пример #4
0
    def eval(self, obs, maxrank=None, beamlogprob=-np.Inf):
        """Compute the log probability under the model and compute posteriors

        Implements rank and beam pruning in the forward-backward
        algorithm to speed up inference in large models.

        Parameters
        ----------
        obs : array_like, shape (n, n_features)
            Sequence of n_features-dimensional data points.  Each row
            corresponds to a single point in the sequence.
        maxrank : int
            Maximum rank to evaluate for rank pruning.  If not None,
            only consider the top `maxrank` states in the inner
            sum of the forward algorithm recursion.  Defaults to None
            (no rank pruning).  See The HTK Book for more details.
        beamlogprob : float
            Width of the beam-pruning beam in log-probability units.
            Defaults to -numpy.Inf (no beam pruning).  See The HTK
            Book for more details.

        Returns
        -------
        logprob : array_like, shape (n,)
            Log probabilities of the sequence `observation`
        posteriors: array_like, shape (n, n_states)
            Posterior probabilities of each state for each
            observation

        See Also
        --------
        score : Compute the log probability under the model
        decode : Find most likely state sequence corresponding to a `observation`
        """
        obs = np.asanyarray(obs)
        framelogprob = self._compute_log_likelihood(obs)
        logprob, fwdlattice = self._do_forward_pass(framelogprob, maxrank,
                                                    beamlogprob)
        bwdlattice = self._do_backward_pass(framelogprob, fwdlattice, maxrank,
                                            beamlogprob)
        gamma = fwdlattice + bwdlattice
        # gamma is guaranteed to be correctly normalized by logprob at
        # all frames, unless we do approximate inference using pruning.
        # So, we will normalize each frame explicitly in case we
        # pruned too aggressively.
        posteriors = np.exp(gamma.T - logsum(gamma, axis=1)).T
        return logprob, posteriors
Пример #5
0
    def _do_backward_pass(self,
                          framelogprob,
                          fwdlattice,
                          maxrank=None,
                          beamlogprob=-np.Inf):
        nobs = len(framelogprob)
        bwdlattice = np.zeros((nobs, self._n_states))

        for n in range(nobs - 1, 0, -1):
            # Do HTK style pruning (p. 137 of HTK Book version 3.4).
            # Don't bother computing backward probability if
            # fwdlattice * bwdlattice is more than a certain distance
            # from the total log likelihood.
            idx = self._prune_states(bwdlattice[n] + fwdlattice[n], None, -50)
            #beamlogprob)
            #-numpy.Inf)
            bwdlattice[n -
                       1] = logsum(self._log_transmat[:, idx] +
                                   bwdlattice[n, idx] + framelogprob[n, idx],
                                   axis=1)
        bwdlattice[bwdlattice <= ZEROLOGPROB] = -np.Inf

        return bwdlattice
Пример #6
0
    def fit(self,
            obs,
            n_iter=10,
            thresh=1e-2,
            params=string.ascii_letters,
            init_params=string.ascii_letters,
            maxrank=None,
            beamlogprob=-np.Inf,
            **kwargs):
        """Estimate model parameters.

        An initialization step is performed before entering the EM
        algorithm. If you want to avoid this step, set the keyword
        argument init_params to the empty string ''. Likewise, if you
        would like just to do an initialization, call this method with
        n_iter=0.

        Parameters
        ----------
        obs : list
            List of array-like observation sequences (shape (n_i, n_features)).
        n_iter : int, optional
            Number of iterations to perform.
        thresh : float, optional
            Convergence threshold.
        params : string, optional
            Controls which parameters are updated in the training
            process.  Can contain any combination of 's' for startprob,
            't' for transmat, 'm' for means, and 'c' for covars, etc.
            Defaults to all parameters.
        init_params : string, optional
            Controls which parameters are initialized prior to
            training.  Can contain any combination of 's' for
            startprob, 't' for transmat, 'm' for means, and 'c' for
            covars, etc.  Defaults to all parameters.
        maxrank : int, optional
            Maximum rank to evaluate for rank pruning.  If not None,
            only consider the top `maxrank` states in the inner
            sum of the forward algorithm recursion.  Defaults to None
            (no rank pruning).  See "The HTK Book" for more details.
        beamlogprob : float, optional
            Width of the beam-pruning beam in log-probability units.
            Defaults to -numpy.Inf (no beam pruning).  See "The HTK
            Book" for more details.

        Notes
        -----
        In general, `logprob` should be non-decreasing unless
        aggressive pruning is used.  Decreasing `logprob` is generally
        a sign of overfitting (e.g. a covariance parameter getting too
        small).  You can fix this by getting more training data, or
        decreasing `covars_prior`.
        """
        self._init(obs, init_params)

        logprob = []
        for i in range(n_iter):
            # Expectation step
            stats = self._initialize_sufficient_statistics()
            curr_logprob = 0
            for seq in obs:
                framelogprob = self._compute_log_likelihood(seq)
                lpr, fwdlattice = self._do_forward_pass(
                    framelogprob, maxrank, beamlogprob)
                bwdlattice = self._do_backward_pass(framelogprob, fwdlattice,
                                                    maxrank, beamlogprob)
                gamma = fwdlattice + bwdlattice
                posteriors = np.exp(gamma.T - logsum(gamma, axis=1)).T
                curr_logprob += lpr
                self._accumulate_sufficient_statistics(stats, seq,
                                                       framelogprob,
                                                       posteriors, fwdlattice,
                                                       bwdlattice, params)
            logprob.append(curr_logprob)

            # Check for convergence.
            if i > 0 and abs(logprob[-1] - logprob[-2]) < thresh:
                break

            # Maximization step
            self._do_mstep(stats, params, **kwargs)

        return self