def main(hparams): # init module if hparams.train: model = S_BERT_Regression(hparams) checkpoint_callback = ModelCheckpoint(filepath=os.getcwd(), verbose=True, mode='min', prefix='', monitor='avg_val_loss') trainer = Trainer(max_epochs=hparams.max_nb_epochs, gpus=hparams.gpus, nb_gpu_nodes=hparams.nodes, checkpoint_callback=checkpoint_callback, early_stop_callback=False, fast_dev_run=False, overfit_pct=0.0) trainer.fit(model) else: model = S_BERT_Regression.load_from_checkpoint('_ckpt_epoch_3.ckpt') trainer = Trainer() trainer.test(model)
gpus=hparams.gpus, nb_gpu_nodes=hparams.nodes, checkpoint_callback=checkpoint_callback, early_stop_callback=False, fast_dev_run=False, overfit_pct=0.0) trainer.fit(model) else: model = S_BERT_Regression.load_from_checkpoint('_ckpt_epoch_3.ckpt') trainer = Trainer() trainer.test(model) if __name__ == '__main__': parser = ArgumentParser(add_help=False) parser.add_argument('--gpus', type=str, default=None) parser.add_argument('--nodes', type=int, default=1) parser.add_argument('--train', dest='train', action='store_true') parser.add_argument('--test', dest='train', action='store_false') # give the module a chance to add own params # good practice to define LightningModule specific params in the module parser = S_BERT_Regression.add_model_specific_args(parser) # parse params hparams = parser.parse_args() main(hparams)