Пример #1
0
    yy = []
    pp = []

    seq_pred_y_valid = np.zeros((_seq_pred_y_valid.shape[0], before_steps))
    seq_pred_y_valid[np.where(
        _seq_pred_y_valid[:, :before_steps] > sur_thrld_valid)] = 1

    early_correct = np.sum(seq_pred_y_valid == batch_y_valid, axis=0)
    yy.extend(batch_y_valid)
    pp.extend(seq_pred_y_valid)

    yy = np.asarray(yy)
    pp = np.asarray(pp)
    gt = np.logical_not(yy).astype(float)
    pr = np.logical_not(pp).astype(float)
    _precision, _recall, _F1 = prec_reca_F1(gt, pr)

    seq_corr_rate = early_correct / float(_seq_pred_y_valid.shape[0])
    thrld_score[sur_thrld_valid] = np.mean(seq_corr_rate)

best_thrld, acc_best_threshold = max(thrld_score.iteritems(),
                                     key=operator.itemgetter(1))
# print best_thrld, acc_best_threshold, seq_corr_rate
# # exit(0)

# best_thrld = 0.9505
#
# print "-----", best_thrld

yy = []
pp = []
Пример #2
0
x = [[0, 1, 1, 0], [1, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 0], [0, 0, 1, 0]]

y = [[1, 0, 1, 0], [0, 0, 0, 0], [0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 1]]

x = np.array(x)
y = np.array(y)

print x

print
print
print

print y

precision, recall, F1 = prec_reca_F1(x, y)

print
print

print "precison: ", precision
print

print "recall: ", recall
print

print "F1: ", F1
print

exit(0)