def setUp(self): """Create shared resources that all tests can use""" self.calculator = ImpactCalculator() self.vector_path = os.path.join(TESTDATA, 'Padang_WGS84.shp') self.vector_layer = read_safe_layer(self.vector_path) self.raster_shake_path = os.path.join(HAZDATA, 'Shakemap_Padang_2009.asc') self.raster_shake = read_safe_layer(self.raster_shake_path) # UTM projected layer fn = 'tsunami_max_inundation_depth_BB_utm.asc' self.raster_tsunami_path = os.path.join(TESTDATA, fn) self.raster_exposure_path = os.path.join( TESTDATA, 'tsunami_building_exposure.shp') self.raster_population_path = os.path.join(EXPDATA, 'glp10ag.asc') self.calculator.set_hazard_layer(self.raster_shake) self.calculator.set_exposure_layer(self.vector_layer) self.calculator.set_function('Earthquake Building Impact Function')
def setUp(self): """Create shared resources that all tests can use""" register_impact_functions() self.calculator = ImpactCalculator() self.vector_path = os.path.join(TESTDATA, 'Padang_WGS84.shp') self.vector_layer = read_safe_layer(self.vector_path) self.raster_shake_path = os.path.join( HAZDATA, 'Shakemap_Padang_2009.asc') self.raster_shake = read_safe_layer(self.raster_shake_path) # UTM projected layer fn = 'tsunami_max_inundation_depth_BB_utm.asc' self.raster_tsunami_path = os.path.join(TESTDATA, fn) self.raster_exposure_path = os.path.join( TESTDATA, 'tsunami_building_exposure.shp') self.raster_population_path = os.path.join(EXPDATA, 'glp10ag.asc') self.calculator.set_hazard_layer(self.raster_shake) self.calculator.set_exposure_layer(self.vector_layer) self.calculator.set_function('EarthquakeBuildingFunction') self.impact_function_manager = ImpactFunctionManager()
def test_issue100(self): """Test for issue 100: unhashable type dict""" exposure_path = os.path.join(TESTDATA, 'OSM_building_polygons_20110905.shp') hazard_path = os.path.join( HAZDATA, 'Flood_Current_Depth_Jakarta_geographic.asc') # Verify relevant metada is ok h = read_safe_layer(hazard_path) e = read_safe_layer(exposure_path) self.calculator.set_hazard_layer(h) self.calculator.set_exposure_layer(e) self.calculator.set_function('Flood Raster Building Impact Function') try: function_runner = self.calculator.get_runner() # Run non threaded function_runner.run() message = function_runner.result() impact_layer = function_runner.impact_layer() file_name = impact_layer.get_filename() assert (file_name and not file_name == '') assert (message and not message == '') except Exception, e: # pylint: disable=W0703 message = 'Calculator run failed. %s' % str(e) assert (), message
def test_issue100(self): """Test for issue 100: unhashable type dict""" exposure_path = os.path.join( TESTDATA, 'OSM_building_polygons_20110905.shp') hazard_path = os.path.join( HAZDATA, 'Flood_Current_Depth_Jakarta_geographic.asc') # Verify relevant metada is ok h = read_safe_layer(hazard_path) e = read_safe_layer(exposure_path) self.calculator.set_hazard_layer(h) self.calculator.set_exposure_layer(e) self.calculator.set_function('FloodRasterBuildingFunction') try: function_runner = self.calculator.get_runner() # Run non threaded function_runner.run() message = function_runner.result() impact_layer = function_runner.impact_layer() file_name = impact_layer.get_filename() assert(file_name and not file_name == '') assert(message and not message == '') except Exception, e: # pylint: disable=W0703 message = 'Calculator run failed. %s' % str(e) assert(), message
def test_raster_scaling_projected(self): """Attempt to scale projected density raster layers raise exception. Automatic scaling when resampling density data does not currently work for projected layers. See issue #123. For the time being this test checks that an exception is raised when scaling is attempted on projected layers. When we resolve issue #123, this test should be rewritten. """ test_filename = 'Population_Jakarta_UTM48N.tif' raster_path = ('%s/%s' % (TESTDATA, test_filename)) # Get reference values safe_layer = read_safe_layer(raster_path) min_value, max_value = safe_layer.get_extrema() native_resolution = safe_layer.get_resolution() print min_value, max_value print native_resolution # Define bounding box in EPSG:4326 bounding_box = [106.61, -6.38, 107.05, -6.07] resolutions = [0.02, 0.01, 0.005, 0.002, 0.001] # Test for a range of resolutions for resolution in resolutions: # Clip the raster to the bbox extra_keywords = {'resolution': native_resolution} raster_layer = QgsRasterLayer(raster_path, 'xxx') try: clip_layer( raster_layer, bounding_box, resolution, extra_keywords=extra_keywords ) except InvalidProjectionError: pass else: message = 'Should have raised InvalidProjectionError' raise Exception(message)
def test_raster_scaling(self): """Raster layers can be scaled when resampled. This is a test for ticket #52 Native test .asc data has Population_Jakarta_geographic.asc ncols 638 nrows 649 cellsize 0.00045228819716044 Population_2010.asc ncols 5525 nrows 2050 cellsize 0.0083333333333333 Scaling is necessary for raster data that represents density such as population per km^2 """ filenames = [ 'Population_Jakarta_geographic.asc', 'Population_2010.asc' ] for filename in filenames: raster_path = ('%s/%s' % (TESTDATA, filename)) # Get reference values safe_layer = read_safe_layer(raster_path) min_value, max_value = safe_layer.get_extrema() del max_value del min_value native_resolution = safe_layer.get_resolution() # Get the Hazard extents as an array in EPSG:4326 bounding_box = safe_layer.get_bounding_box() resolutions = [ 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, # Coarser 0.0002 # Finer ] # Test for a range of resolutions for resolution in resolutions: # Finer # To save time only do two resolutions for the # large population set if filename.startswith('Population_2010'): if resolution > 0.01 or resolution < 0.005: break # Clip the raster to the bbox extra_keywords = {'resolution': native_resolution} raster_layer = QgsRasterLayer(raster_path, 'xxx') result = clip_layer( raster_layer, bounding_box, resolution, extra_keywords=extra_keywords ) safe_layer = read_safe_layer(result.source()) native_data = safe_layer.get_data(scaling=False) scaled_data = safe_layer.get_data(scaling=True) sigma_value = (safe_layer.get_resolution()[0] / native_resolution[0]) ** 2 # Compare extrema expected_scaled_max = sigma_value * numpy.nanmax(native_data) message = ( 'Resampled raster was not rescaled correctly: ' 'max(scaled_data) was %f but expected %f' % (numpy.nanmax(scaled_data), expected_scaled_max)) # FIXME (Ole): The rtol used to be 1.0e-8 - # now it has to be 1.0e-6, otherwise we get # max(scaled_data) was 12083021.000000 but # expected 12083020.414316 # Is something being rounded to the nearest # integer? assert numpy.allclose(expected_scaled_max, numpy.nanmax(scaled_data), rtol=1.0e-6, atol=1.0e-8), message expected_scaled_min = sigma_value * numpy.nanmin(native_data) message = ( 'Resampled raster was not rescaled correctly: ' 'min(scaled_data) was %f but expected %f' % (numpy.nanmin(scaled_data), expected_scaled_min)) assert numpy.allclose(expected_scaled_min, numpy.nanmin(scaled_data), rtol=1.0e-8, atol=1.0e-12), message # Compare element-wise message = 'Resampled raster was not rescaled correctly' assert nan_allclose(native_data * sigma_value, scaled_data, rtol=1.0e-8, atol=1.0e-8), message # Check that it also works with manual scaling manual_data = safe_layer.get_data(scaling=sigma_value) message = 'Resampled raster was not rescaled correctly' assert nan_allclose(manual_data, scaled_data, rtol=1.0e-8, atol=1.0e-8), message # Check that an exception is raised for bad arguments try: safe_layer.get_data(scaling='bad') except GetDataError: pass else: message = 'String argument should have raised exception' raise Exception(message) try: safe_layer.get_data(scaling='(1, 3)') except GetDataError: pass else: message = 'Tuple argument should have raised exception' raise Exception(message) # Check None option without keyword datatype == 'density' safe_layer.keywords['datatype'] = 'undefined' unscaled_data = safe_layer.get_data(scaling=None) message = 'Data should not have changed' assert nan_allclose(native_data, unscaled_data, rtol=1.0e-12, atol=1.0e-12), message # Try with None and density keyword safe_layer.keywords['datatype'] = 'density' unscaled_data = safe_layer.get_data(scaling=None) message = 'Resampled raster was not rescaled correctly' assert nan_allclose(scaled_data, unscaled_data, rtol=1.0e-12, atol=1.0e-12), message safe_layer.keywords['datatype'] = 'counts' unscaled_data = safe_layer.get_data(scaling=None) message = 'Data should not have changed' assert nan_allclose(native_data, unscaled_data, rtol=1.0e-12, atol=1.0e-12), message
def test_clip_both(self): """Raster and Vector layers can be clipped.""" # Create a vector layer layer_name = 'padang' vector_layer = QgsVectorLayer(VECTOR_PATH, layer_name, 'ogr') message = ( 'Did not find layer "%s" in path "%s"' % (layer_name, VECTOR_PATH)) assert vector_layer.isValid(), message # Create a raster layer layer_name = 'shake' raster_layer = QgsRasterLayer(RASTERPATH, layer_name) message = ( 'Did not find layer "%s" in path "%s"' % (layer_name, RASTERPATH)) assert raster_layer.isValid(), message # Create a bounding box view_port_geo_extent = [99.53, -1.22, 101.20, -0.36] # Get the Hazard extents as an array in EPSG:4326 hazard_geo_extent = [ raster_layer.extent().xMinimum(), raster_layer.extent().yMinimum(), raster_layer.extent().xMaximum(), raster_layer.extent().yMaximum() ] # Get the Exposure extents as an array in EPSG:4326 exposure_geo_extent = [ vector_layer.extent().xMinimum(), vector_layer.extent().yMinimum(), vector_layer.extent().xMaximum(), vector_layer.extent().yMaximum() ] # Now work out the optimal extent between the two layers and # the current view extent. The optimal extent is the intersection # between the two layers and the viewport. # Extent is returned as an array [xmin,ymin,xmax,ymax] geo_extent = get_optimal_extent( hazard_geo_extent, exposure_geo_extent, view_port_geo_extent) # Clip the vector to the bbox result = clip_layer(vector_layer, geo_extent) # Check the output is valid assert os.path.exists(result.source()) read_safe_layer(result.source()) # Clip the raster to the bbox result = clip_layer(raster_layer, geo_extent) # Check the output is valid assert os.path.exists(result.source()) read_safe_layer(result.source()) # ------------------------------- # Check the extra keywords option # ------------------------------- # Clip the vector to the bbox result = clip_layer( vector_layer, geo_extent, extra_keywords={'title': 'piggy'}) # Check the output is valid assert os.path.exists(result.source()) safe_layer = read_safe_layer(result.source()) keywords = safe_layer.get_keywords() # message = 'Extra keyword was not found in %s: %s' % (myResult, # keywords) assert keywords['title'] == 'piggy' # Clip the raster to the bbox result = clip_layer( raster_layer, geo_extent, extra_keywords={'email': 'animal'}) # Check the output is valid assert os.path.exists(result.source()) safe_layer = read_safe_layer(result.source()) keywords = safe_layer.get_keywords() message = ('Extra keyword was not found in %s: %s' % (result.source(), keywords)) assert keywords['email'] == 'animal', message
def test_raster_scaling(self): """Raster layers can be scaled when resampled. This is a test for ticket #52 Native test .asc data has Population_Jakarta_geographic.asc ncols 638 nrows 649 cellsize 0.00045228819716044 Population_2010.asc ncols 5525 nrows 2050 cellsize 0.0083333333333333 Scaling is necessary for raster data that represents density such as population per km^2 """ filenames = [ 'Population_Jakarta_geographic.asc', 'Population_2010.asc' ] for filename in filenames: raster_path = ('%s/%s' % (TESTDATA, filename)) # Get reference values safe_layer = read_safe_layer(raster_path) min_value, max_value = safe_layer.get_extrema() del max_value del min_value native_resolution = safe_layer.get_resolution() # Get the Hazard extents as an array in EPSG:4326 bounding_box = safe_layer.get_bounding_box() resolutions = [ 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, # Coarser 0.0002 # Finer ] # Test for a range of resolutions for resolution in resolutions: # Finer # To save time only do two resolutions for the # large population set if filename.startswith('Population_2010'): if resolution > 0.01 or resolution < 0.005: break # Clip the raster to the bbox extra_keywords = {'resolution': native_resolution} raster_layer = QgsRasterLayer(raster_path, 'xxx') result = clip_layer(raster_layer, bounding_box, resolution, extra_keywords=extra_keywords) safe_layer = read_safe_layer(result.source()) native_data = safe_layer.get_data(scaling=False) scaled_data = safe_layer.get_data(scaling=True) sigma_value = (safe_layer.get_resolution()[0] / native_resolution[0])**2 # Compare extrema expected_scaled_max = sigma_value * numpy.nanmax(native_data) message = ('Resampled raster was not rescaled correctly: ' 'max(scaled_data) was %f but expected %f' % (numpy.nanmax(scaled_data), expected_scaled_max)) # FIXME (Ole): The rtol used to be 1.0e-8 - # now it has to be 1.0e-6, otherwise we get # max(scaled_data) was 12083021.000000 but # expected 12083020.414316 # Is something being rounded to the nearest # integer? assert numpy.allclose(expected_scaled_max, numpy.nanmax(scaled_data), rtol=1.0e-6, atol=1.0e-8), message expected_scaled_min = sigma_value * numpy.nanmin(native_data) message = ('Resampled raster was not rescaled correctly: ' 'min(scaled_data) was %f but expected %f' % (numpy.nanmin(scaled_data), expected_scaled_min)) assert numpy.allclose(expected_scaled_min, numpy.nanmin(scaled_data), rtol=1.0e-8, atol=1.0e-12), message # Compare element-wise message = 'Resampled raster was not rescaled correctly' assert nan_allclose(native_data * sigma_value, scaled_data, rtol=1.0e-8, atol=1.0e-8), message # Check that it also works with manual scaling manual_data = safe_layer.get_data(scaling=sigma_value) message = 'Resampled raster was not rescaled correctly' assert nan_allclose(manual_data, scaled_data, rtol=1.0e-8, atol=1.0e-8), message # Check that an exception is raised for bad arguments try: safe_layer.get_data(scaling='bad') except GetDataError: pass else: message = 'String argument should have raised exception' raise Exception(message) try: safe_layer.get_data(scaling='(1, 3)') except GetDataError: pass else: message = 'Tuple argument should have raised exception' raise Exception(message) # Check None option without keyword datatype == 'density' safe_layer.keywords['datatype'] = 'undefined' unscaled_data = safe_layer.get_data(scaling=None) message = 'Data should not have changed' assert nan_allclose(native_data, unscaled_data, rtol=1.0e-12, atol=1.0e-12), message # Try with None and density keyword safe_layer.keywords['datatype'] = 'density' unscaled_data = safe_layer.get_data(scaling=None) message = 'Resampled raster was not rescaled correctly' assert nan_allclose(scaled_data, unscaled_data, rtol=1.0e-12, atol=1.0e-12), message safe_layer.keywords['datatype'] = 'counts' unscaled_data = safe_layer.get_data(scaling=None) message = 'Data should not have changed' assert nan_allclose(native_data, unscaled_data, rtol=1.0e-12, atol=1.0e-12), message
def test_clip_both(self): """Raster and Vector layers can be clipped.""" # Create a vector layer layer_name = 'padang' vector_layer = QgsVectorLayer(VECTOR_PATH, layer_name, 'ogr') message = ('Did not find layer "%s" in path "%s"' % (layer_name, VECTOR_PATH)) assert vector_layer.isValid(), message # Create a raster layer layer_name = 'shake' raster_layer = QgsRasterLayer(RASTERPATH, layer_name) message = ('Did not find layer "%s" in path "%s"' % (layer_name, RASTERPATH)) assert raster_layer.isValid(), message # Create a bounding box view_port_geo_extent = [99.53, -1.22, 101.20, -0.36] # Get the Hazard extents as an array in EPSG:4326 hazard_geo_extent = [ raster_layer.extent().xMinimum(), raster_layer.extent().yMinimum(), raster_layer.extent().xMaximum(), raster_layer.extent().yMaximum() ] # Get the Exposure extents as an array in EPSG:4326 exposure_geo_extent = [ vector_layer.extent().xMinimum(), vector_layer.extent().yMinimum(), vector_layer.extent().xMaximum(), vector_layer.extent().yMaximum() ] # Now work out the optimal extent between the two layers and # the current view extent. The optimal extent is the intersection # between the two layers and the viewport. # Extent is returned as an array [xmin,ymin,xmax,ymax] geo_extent = get_optimal_extent(hazard_geo_extent, exposure_geo_extent, view_port_geo_extent) # Clip the vector to the bbox result = clip_layer(vector_layer, geo_extent) # Check the output is valid assert os.path.exists(result.source()) read_safe_layer(result.source()) # Clip the raster to the bbox result = clip_layer(raster_layer, geo_extent) # Check the output is valid assert os.path.exists(result.source()) read_safe_layer(result.source()) # ------------------------------- # Check the extra keywords option # ------------------------------- # Clip the vector to the bbox result = clip_layer(vector_layer, geo_extent, extra_keywords={'title': 'piggy'}) # Check the output is valid assert os.path.exists(result.source()) safe_layer = read_safe_layer(result.source()) keywords = safe_layer.get_keywords() # message = 'Extra keyword was not found in %s: %s' % (myResult, # keywords) assert keywords['title'] == 'piggy' # Clip the raster to the bbox result = clip_layer(raster_layer, geo_extent, extra_keywords={'email': 'animal'}) # Check the output is valid assert os.path.exists(result.source()) safe_layer = read_safe_layer(result.source()) keywords = safe_layer.get_keywords() message = ('Extra keyword was not found in %s: %s' % (result.source(), keywords)) assert keywords['email'] == 'animal', message