Пример #1
0
    def __init__(self, R, p):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: L = lie_algebras.pwitt(GF(5), 5); L
            The 5-Witt Lie algebra over Finite Field of size 5
            sage: TestSuite(L).run()

        We skip the grading test as we need to be able to echelonize a
        matrix over the base ring as part of the test::

            sage: L = lie_algebras.pwitt(Zmod(6), 6)
            sage: TestSuite(L).run(skip="_test_grading")
        """
        if R(p) != 0:
            raise ValueError("{} is not 0 in {}".format(p, R))
        cat = LieAlgebras(R).FiniteDimensional().WithBasis().Graded()
        FinitelyGeneratedLieAlgebra.__init__(self,
                                             R,
                                             index_set=list(range(p)),
                                             category=cat)
        IndexedGenerators.__init__(self,
                                   list(range(p)),
                                   prefix='d',
                                   bracket='[')
        self._p = p
Пример #2
0
    def __init__(self, g, kac_moody):
        """
        Initalize ``self``.

        EXAMPLES::

            sage: asl = lie_algebras.Affine(QQ, ['A',4,1])
            sage: TestSuite(asl).run()
        """
        self._g = g
        self._cartan_type = g.cartan_type().affine()
        R = g.base_ring()
        names = list(g.variable_names()) + ['e0', 'f0', 'c']

        if kac_moody:
            names += ['d']
        self._kac_moody = kac_moody

        names = tuple(names)
        self._ordered_indices = names
        cat = LieAlgebras(R).WithBasis()
        FinitelyGeneratedLieAlgebra.__init__(self,
                                             R,
                                             names,
                                             names,
                                             category=cat)
Пример #3
0
    def __init__(self, R, p):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: L = lie_algebras.pwitt(GF(5), 5); L
            The 5-Witt Lie algebra over Finite Field of size 5
            sage: TestSuite(L).run()
            sage: L = lie_algebras.pwitt(Zmod(6), 6)
            sage: TestSuite(L).run()  # not tested -- universal envelope doesn't work
            sage: L._test_jacobi_identity()
        """
        if R(p) != 0:
            raise ValueError("{} is not 0 in {}".format(p, R))
        cat = LieAlgebras(R).FiniteDimensional().WithBasis()
        FinitelyGeneratedLieAlgebra.__init__(self,
                                             R,
                                             index_set=list(range(p)),
                                             category=cat)
        IndexedGenerators.__init__(self,
                                   list(range(p)),
                                   prefix='d',
                                   bracket='[')
        self._p = p
    def __init__(self, R, s_coeff, names, index_set, category=None, prefix=None,
                 bracket=None, latex_bracket=None, string_quotes=None, **kwds):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: L = LieAlgebra(QQ, 'x,y', {('x','y'): {'x':1}})
            sage: TestSuite(L).run()
        """
        default = (names != tuple(index_set))
        if prefix is None:
            if default:
                prefix = 'L'
            else:
                prefix = ''
        if bracket is None:
            bracket = default
        if latex_bracket is None:
            latex_bracket = default
        if string_quotes is None:
            string_quotes = default

        #self._pos_to_index = dict(enumerate(index_set))
        self._index_to_pos = {k: i for i,k in enumerate(index_set)}
        if "sorting_key" not in kwds:
            kwds["sorting_key"] = self._index_to_pos.__getitem__

        cat = LieAlgebras(R).WithBasis().FiniteDimensional().or_subcategory(category)
        FinitelyGeneratedLieAlgebra.__init__(self, R, names, index_set, cat)
        IndexedGenerators.__init__(self, self._indices, prefix=prefix,
                                   bracket=bracket, latex_bracket=latex_bracket,
                                   string_quotes=string_quotes, **kwds)

        self._M = FreeModule(R, len(index_set))

        # Transform the values in the structure coefficients to elements
        def to_vector(tuples):
            vec = [R.zero()]*len(index_set)
            for k,c in tuples:
                vec[self._index_to_pos[k]] = c
            vec = self._M(vec)
            vec.set_immutable()
            return vec
        self._s_coeff = {(self._index_to_pos[k[0]], self._index_to_pos[k[1]]):
                         to_vector(s_coeff[k])
                         for k in s_coeff.keys()}
Пример #5
0
    def __init__(self, R, s_coeff, names, index_set, category=None, prefix=None,
                 bracket=None, latex_bracket=None, string_quotes=None, **kwds):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: L = LieAlgebra(QQ, 'x,y', {('x','y'): {'x':1}})
            sage: TestSuite(L).run()
        """
        default = (names != tuple(index_set))
        if prefix is None:
            if default:
                prefix = 'L'
            else:
                prefix = ''
        if bracket is None:
            bracket = default
        if latex_bracket is None:
            latex_bracket = default
        if string_quotes is None:
            string_quotes = default

        #self._pos_to_index = dict(enumerate(index_set))
        self._index_to_pos = {k: i for i,k in enumerate(index_set)}
        if "sorting_key" not in kwds:
            kwds["sorting_key"] = self._index_to_pos.__getitem__

        cat = LieAlgebras(R).WithBasis().FiniteDimensional().or_subcategory(category)
        FinitelyGeneratedLieAlgebra.__init__(self, R, names, index_set, cat)
        IndexedGenerators.__init__(self, self._indices, prefix=prefix,
                                   bracket=bracket, latex_bracket=latex_bracket,
                                   string_quotes=string_quotes, **kwds)

        self._M = FreeModule(R, len(index_set))

        # Transform the values in the structure coefficients to elements
        def to_vector(tuples):
            vec = [R.zero()]*len(index_set)
            for k,c in tuples:
                vec[self._index_to_pos[k]] = c
            vec = self._M(vec)
            vec.set_immutable()
            return vec
        self._s_coeff = {(self._index_to_pos[k[0]], self._index_to_pos[k[1]]):
                         to_vector(s_coeff[k])
                         for k in s_coeff.keys()}
Пример #6
0
    def __init__(self, R, p):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: L = lie_algebras.pwitt(GF(5), 5); L
            The 5-Witt Lie algebra over Finite Field of size 5
            sage: TestSuite(L).run()
            sage: L = lie_algebras.pwitt(Zmod(6), 6)
            sage: TestSuite(L).run()  # not tested -- universal envelope doesn't work
            sage: L._test_jacobi_identity()
        """
        cat = LieAlgebras(R).FiniteDimensional().WithBasis()
        FinitelyGeneratedLieAlgebra.__init__(self, R, index_set=range(p), category=cat)
        IndexedGenerators.__init__(self, range(p), prefix='d', bracket='[')
        self._p = p
Пример #7
0
    def __init__(self, lie, basis_name):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: L.<x, y> = LieAlgebra(QQ)
            sage: L.Hall()
            doctest:warning
            ...
            FutureWarning: The Hall basis has not been fully proven correct, but currently no bugs are known
            See http://trac.sagemath.org/16823 for details.
            Free Lie algebra generated by (x, y) over Rational Field in the Hall basis
        """
        self._basis_name = basis_name
        IndexedGenerators.__init__(self, lie._indices, prefix='', bracket=False)
        FinitelyGeneratedLieAlgebra.__init__(self, lie.base_ring(),
                            names=lie._names, index_set=lie._indices,
                            category=FreeLieAlgebraBases(lie))
Пример #8
0
    def __init__(self, lie, basis_name):
        """
        Initialize ``self``.

        EXAMPLES::

            sage: L.<x, y> = LieAlgebra(QQ)
            sage: L.Hall()
            doctest:warning
            ...
            FutureWarning: The Hall basis has not been fully proven correct, but currently no bugs are known
            See http://trac.sagemath.org/16823 for details.
            Free Lie algebra generated by (x, y) over Rational Field in the Hall basis
        """
        self._basis_name = basis_name
        IndexedGenerators.__init__(self, lie._indices, prefix='', bracket=False)
        FinitelyGeneratedLieAlgebra.__init__(self, lie.base_ring(),
                            names=lie._names, index_set=lie._indices,
                            category=FreeLieAlgebraBases(lie))
Пример #9
0
    def __init__(self, g, kac_moody):
        """
        Initalize ``self``.

        EXAMPLES::

            sage: asl = lie_algebras.Affine(QQ, ['A',4,1])
            sage: TestSuite(asl).run()
        """
        self._g = g
        self._cartan_type = g.cartan_type().affine()
        R = g.base_ring()
        names = list(g.variable_names()) + ['e0', 'f0', 'c']

        if kac_moody:
            names += ['d']
        self._kac_moody = kac_moody

        names = tuple(names)
        self._ordered_indices = names
        cat = LieAlgebras(R).WithBasis()
        FinitelyGeneratedLieAlgebra.__init__(self, R, names, names, category=cat)