Пример #1
0
def class_nr_pos_def_qf(D):
    r"""
    Compute the class number of positive definite quadratic forms.
    For fundamental discriminants this is the class number of Q(sqrt(D)),
    otherwise it is computed using: Cohen 'A course in Computational Algebraic Number Theory', p. 233
    """
    if D>0:
        return 0
    D4 = D % 4
    if D4 == 3 or D4==2:
        return 0
    K = QuadraticField(D)
    if is_fundamental_discriminant(D):
        return K.class_number()
    else:
        D0 = K.discriminant()
        Df = ZZ(D).divide_knowing_divisible_by(D0)
        if not is_square(Df):
            raise ArithmeticError,"DId not get a discrinimant * square! D={0} disc(D)={1}".format(D,D0)
        D2 = sqrt(Df)
        h0 = QuadraticField(D0).class_number()
        w0 = _get_w(D0)
        w = _get_w(D)
        #print "w,w0=",w,w0
        #print "h0=",h0
        h = 1
        for p in prime_divisors(D2):
            h = QQ(h)*(1-kronecker(D0,p)/QQ(p))
        #print "h=",h
        #print "fak=",
        h=QQ(h*h0*D2*w)/QQ(w0)
        return h
Пример #2
0
def class_nr_pos_def_qf(D):
    r"""
    Compute the class number of positive definite quadratic forms.
    For fundamental discriminants this is the class number of Q(sqrt(D)),
    otherwise it is computed using: Cohen 'A course in Computational Algebraic Number Theory', p. 233
    """
    if D>0:
        return 0
    D4 = D % 4
    if D4 == 3 or D4==2:
        return 0
    K = QuadraticField(D)
    if is_fundamental_discriminant(D):
        return K.class_number()
    else:
        D0 = K.discriminant()
        Df = ZZ(D).divide_knowing_divisible_by(D0)
        if not is_square(Df):
            raise ArithmeticError("Did not get a discrimimant * square! D={0} disc(D)={1}".format(D,D0))
        D2 = sqrt(Df)
        h0 = QuadraticField(D0).class_number()
        w0 = _get_w(D0)
        w = _get_w(D)
        #print "w,w0=",w,w0
        #print "h0=",h0
        h = 1
        for p in prime_divisors(D2):
            h = QQ(h)*(1-kronecker(D0,p)/QQ(p))
        #print "h=",h
        #print "fak=",
        h=QQ(h*h0*D2*w)/QQ(w0)
        return h
Пример #3
0
def oezman_sieve(p, N):
    """Returns True iff p is in S_N. Only makes sense if p ramifies in K"""

    M = QuadraticField(-N)
    h_M = M.class_number()
    H = M.hilbert_class_field("b")
    primes_above_p = M.primes_above(p)

    primes_tot_split_in_hcf = []

    for P in primes_above_p:
        if len(H.primes_above(P)) == h_M:
            primes_tot_split_in_hcf.append(P)

    if not primes_tot_split_in_hcf:
        return False

    f = R(hilbert_class_polynomial(M.discriminant()))
    B = NumberField(f, name="t")
    assert B.degree() == h_M

    possible_nus = B.primes_above(p)

    for nu in possible_nus:
        if nu.residue_class_degree() == 1:
            return True

    return False
Пример #4
0
def compare_formulas_1(D, k):
    DG = DirichletGroup(abs(D))
    chi = DG(kronecker_character(D))
    d1 = dimension_new_cusp_forms(chi, k)
    #if D>0:
    #    lvals=sage.lfunctions.all.lcalc.twist_values(1,2,D)
    #else:
    #    lvals=sage.lfunctions.all.lcalc.twist_values(1,D,0)
    #s1=RR(sum([sqrt(abs(lv[0]))*lv[1]*2**len(prime_factors(D/lv[0])) for lv in lvals if lv[0].divides(D) and Zmod(lv[0])(abs(D/lv[0])).is_square()]))
    #d2=RR(1/pi*s1)
    d2 = 0
    for d in divisors(D):
        if is_fundamental_discriminant(-d):
            K = QuadraticField(-d)
            DD = old_div(ZZ(D), ZZ(d))
            ep = euler_phi((chi * DG(kronecker_character(-d))).conductor())
            #ep=euler_phi(squarefree_part(abs(D*d)))
            print("ep=", ep, D, d)
            ids = [a for a in K.ideals_of_bdd_norm(-DD)[-DD]]
            eulers1 = []
            for a in ids:
                e = a.euler_phi()
                if e != 1 and ep == 1:
                    if K(-1).mod(a) != K(1).mod(a):
                        e = old_div(e, (2 * ep))
                else:
                    e = old_div(e, ep)
                eulers1.append(e)
            print(eulers1, ep)
            s = sum(eulers1)
            if ep == 1 and not (d.divides(DD) or abs(DD) == 1):
                continue
            print(d, s)
            if len(eulers1) > 0:
                d2 += s * K.class_number()
    return d1 - d2