Пример #1
0
def FundamentalGroupOfExtendedAffineWeylGroup(cartan_type,
                                              prefix='pi',
                                              general_linear=None):
    r"""
    Factory for the fundamental group of an extended affine Weyl group.

    INPUT:

    - ``cartan_type`` -- a Cartan type that is either affine or finite, with the latter being a
      shorthand for the untwisted affinization
    - ``prefix`` (default: 'pi') -- string that labels the elements of the group
    - ``general_linear`` -- (default: None, meaning False) In untwisted type A, if True, use the
      universal central extension

    .. RUBRIC:: Fundamental group

    Associated to each affine Cartan type `\tilde{X}` is an extended affine Weyl group `E`.
    Its subgroup of length-zero elements is called the fundamental group `F`.
    The group `F` can be identified with a subgroup of the group of automorphisms of the
    affine Dynkin diagram. As such, every element of `F` can be viewed as a permutation of the
    set `I` of affine Dynkin nodes.

    Let `0 \in I` be the distinguished affine node; it is the one whose removal produces the
    associated finite Cartan type (call it `X`). A node `i \in I` is called *special*
    if some automorphism of the affine Dynkin diagram, sends `0` to `i`.
    The node `0` is always special due to the identity automorphism.
    There is a bijection of the set of special nodes with the fundamental group. We denote the
    image of `i` by `\pi_i`. The structure of `F` is determined as follows.

    - `\tilde{X}` is untwisted -- `F` is isomorphic to `P^\vee/Q^\vee` where `P^\vee` and `Q^\vee` are the
      coweight and coroot lattices of type `X`. The group `P^\vee/Q^\vee` consists of the cosets `\omega_i^\vee + Q^\vee`
      for special nodes `i`, where `\omega_0^\vee = 0` by convention. In this case the special nodes `i`
      are the *cominuscule* nodes, the ones such that `\omega_i^\vee(\alpha_j)` is `0` or `1` for all `j\in I_0 = I \setminus \{0\}`.
      For `i` special, addition by `\omega_i^\vee+Q^\vee` permutes `P^\vee/Q^\vee` and therefore permutes the set of special nodes.
      This permutation extends uniquely to an automorphism of the affine Dynkin diagram.
    - `\tilde{X}` is dual untwisted -- (that is, the dual of `\tilde{X}` is untwisted) `F` is isomorphic to `P/Q`
      where `P` and `Q` are the weight and root lattices of type `X`. The group `P/Q` consists of the cosets
      `\omega_i + Q` for special nodes `i`, where `\omega_0 = 0` by convention. In this case the special nodes `i`
      are the *minuscule* nodes, the ones such that `\alpha_j^\vee(\omega_i)` is `0` or `1` for all `j \in I_0`.
      For `i` special, addition by `\omega_i+Q` permutes `P/Q` and therefore permutes the set of special nodes.
      This permutation extends uniquely to an automorphism of the affine Dynkin diagram.
    - `\tilde{X}` is mixed -- (that is, not of the above two types) `F` is the trivial group.

    EXAMPLES::

        sage: from sage.combinat.root_system.fundamental_group import FundamentalGroupOfExtendedAffineWeylGroup
        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1]); F
        Fundamental group of type ['A', 3, 1]
        sage: F.cartan_type().dynkin_diagram()
        0
        O-------+
        |       |
        |       |
        O---O---O
        1   2   3
        A3~
        sage: F.special_nodes()
        (0, 1, 2, 3)
        sage: F(1)^2
        pi[2]
        sage: F(1)*F(2)
        pi[3]
        sage: F(3)^(-1)
        pi[1]

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("B3"); F
        Fundamental group of type ['B', 3, 1]
        sage: F.cartan_type().dynkin_diagram()
            O 0
            |
            |
        O---O=>=O
        1   2   3
        B3~
        sage: F.special_nodes()
        (0, 1)

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("C2"); F
        Fundamental group of type ['C', 2, 1]
        sage: F.cartan_type().dynkin_diagram()
        O=>=O=<=O
        0   1   2
        C2~
        sage: F.special_nodes()
        (0, 2)

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D4"); F
        Fundamental group of type ['D', 4, 1]
        sage: F.cartan_type().dynkin_diagram()
            O 4
            |
            |
        O---O---O
        1   |2  3
            |
            O 0
        D4~
        sage: F.special_nodes()
        (0, 1, 3, 4)
        sage: (F(4), F(4)^2)
        (pi[4], pi[0])

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D5"); F
        Fundamental group of type ['D', 5, 1]
        sage: F.cartan_type().dynkin_diagram()
          0 O   O 5
            |   |
            |   |
        O---O---O---O
        1   2   3   4
        D5~
        sage: F.special_nodes()
        (0, 1, 4, 5)
        sage: (F(5), F(5)^2, F(5)^3, F(5)^4)
        (pi[5], pi[1], pi[4], pi[0])
        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("E6"); F
        Fundamental group of type ['E', 6, 1]
        sage: F.cartan_type().dynkin_diagram()
                O 0
                |
                |
                O 2
                |
                |
        O---O---O---O---O
        1   3   4   5   6
        E6~
        sage: F.special_nodes()
        (0, 1, 6)
        sage: F(1)^2
        pi[6]

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['D',4,2]); F
        Fundamental group of type ['C', 3, 1]^*
        sage: F.cartan_type().dynkin_diagram()
        O=<=O---O=>=O
        0   1   2   3
        C3~*
        sage: F.special_nodes()
        (0, 3)

    We also implement a fundamental group for `GL_n`. It is defined to be the group of integers, which is the
    covering group of the fundamental group Z/nZ for affine `SL_n`::

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True); F
        Fundamental group of GL(3)
        sage: x = F.an_element(); x
        pi[5]
        sage: x*x
        pi[10]
        sage: x.inverse()
        pi[-5]
        sage: wt = F.cartan_type().classical().root_system().ambient_space().an_element(); wt
        (2, 2, 3)
        sage: x.act_on_classical_ambient(wt)
        (2, 3, 2)
        sage: w = WeylGroup(F.cartan_type(),prefix="s").an_element(); w
        s0*s1*s2
        sage: x.act_on_affine_weyl(w)
        s2*s0*s1
    """
    cartan_type = CartanType(cartan_type)
    if cartan_type.is_finite():
        cartan_type = cartan_type.affine()
    if not cartan_type.is_affine():
        raise NotImplementedError("Cartan type is not affine")
    if general_linear is True:
        if cartan_type.is_untwisted_affine() and cartan_type.type() == "A":
            return FundamentalGroupGL(cartan_type, prefix)
        else:
            raise ValueError(
                "General Linear Fundamental group is untwisted type A")
    return FundamentalGroupOfExtendedAffineWeylGroup_Class(cartan_type,
                                                           prefix,
                                                           finite=True)
Пример #2
0
def FundamentalGroupOfExtendedAffineWeylGroup(cartan_type, prefix='pi', general_linear=None):
    r"""
    Factory for the fundamental group of an extended affine Weyl group.

    INPUT:

    - ``cartan_type`` -- a Cartan type that is either affine or finite, with the latter being a
      shorthand for the untwisted affinization
    - ``prefix`` (default: 'pi') -- string that labels the elements of the group
    - ``general_linear`` -- (default: None, meaning False) In untwisted type A, if True, use the
      universal central extension

    .. RUBRIC:: Fundamental group

    Associated to each affine Cartan type `\tilde{X}` is an extended affine Weyl group `E`.
    Its subgroup of length-zero elements is called the fundamental group `F`.
    The group `F` can be identified with a subgroup of the group of automorphisms of the
    affine Dynkin diagram. As such, every element of `F` can be viewed as a permutation of the
    set `I` of affine Dynkin nodes.

    Let `0 \in I` be the distinguished affine node; it is the one whose removal produces the
    associated finite Cartan type (call it `X`). A node `i \in I` is called *special*
    if some automorphism of the affine Dynkin diagram, sends `0` to `i`.
    The node `0` is always special due to the identity automorphism.
    There is a bijection of the set of special nodes with the fundamental group. We denote the
    image of `i` by `\pi_i`. The structure of `F` is determined as follows.

    - `\tilde{X}` is untwisted -- `F` is isomorphic to `P^\vee/Q^\vee` where `P^\vee` and `Q^\vee` are the
      coweight and coroot lattices of type `X`. The group `P^\vee/Q^\vee` consists of the cosets `\omega_i^\vee + Q^\vee`
      for special nodes `i`, where `\omega_0^\vee = 0` by convention. In this case the special nodes `i`
      are the *cominuscule* nodes, the ones such that `\omega_i^\vee(\alpha_j)` is `0` or `1` for all `j\in I_0 = I \setminus \{0\}`.
      For `i` special, addition by `\omega_i^\vee+Q^\vee` permutes `P^\vee/Q^\vee` and therefore permutes the set of special nodes.
      This permutation extends uniquely to an automorphism of the affine Dynkin diagram.
    - `\tilde{X}` is dual untwisted -- (that is, the dual of `\tilde{X}` is untwisted) `F` is isomorphic to `P/Q`
      where `P` and `Q` are the weight and root lattices of type `X`. The group `P/Q` consists of the cosets
      `\omega_i + Q` for special nodes `i`, where `\omega_0 = 0` by convention. In this case the special nodes `i`
      are the *minuscule* nodes, the ones such that `\alpha_j^\vee(\omega_i)` is `0` or `1` for all `j \in I_0`.
      For `i` special, addition by `\omega_i+Q` permutes `P/Q` and therefore permutes the set of special nodes.
      This permutation extends uniquely to an automorphism of the affine Dynkin diagram.
    - `\tilde{X}` is mixed -- (that is, not of the above two types) `F` is the trivial group.

    EXAMPLES::

        sage: from sage.combinat.root_system.fundamental_group import FundamentalGroupOfExtendedAffineWeylGroup
        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1]); F
        Fundamental group of type ['A', 3, 1]
        sage: F.cartan_type().dynkin_diagram()
        0
        O-------+
        |       |
        |       |
        O---O---O
        1   2   3
        A3~
        sage: F.special_nodes()
        (0, 1, 2, 3)
        sage: F(1)^2
        pi[2]
        sage: F(1)*F(2)
        pi[3]
        sage: F(3)^(-1)
        pi[1]

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("B3"); F
        Fundamental group of type ['B', 3, 1]
        sage: F.cartan_type().dynkin_diagram()
            O 0
            |
            |
        O---O=>=O
        1   2   3
        B3~
        sage: F.special_nodes()
        (0, 1)

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("C2"); F
        Fundamental group of type ['C', 2, 1]
        sage: F.cartan_type().dynkin_diagram()
        O=>=O=<=O
        0   1   2
        C2~
        sage: F.special_nodes()
        (0, 2)

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D4"); F
        Fundamental group of type ['D', 4, 1]
        sage: F.cartan_type().dynkin_diagram()
            O 4
            |
            |
        O---O---O
        1   |2  3
            |
            O 0
        D4~
        sage: F.special_nodes()
        (0, 1, 3, 4)
        sage: (F(4), F(4)^2)
        (pi[4], pi[0])

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D5"); F
        Fundamental group of type ['D', 5, 1]
        sage: F.cartan_type().dynkin_diagram()
          0 O   O 5
            |   |
            |   |
        O---O---O---O
        1   2   3   4
        D5~
        sage: F.special_nodes()
        (0, 1, 4, 5)
        sage: (F(5), F(5)^2, F(5)^3, F(5)^4)
        (pi[5], pi[1], pi[4], pi[0])
        sage: F = FundamentalGroupOfExtendedAffineWeylGroup("E6"); F
        Fundamental group of type ['E', 6, 1]
        sage: F.cartan_type().dynkin_diagram()
                O 0
                |
                |
                O 2
                |
                |
        O---O---O---O---O
        1   3   4   5   6
        E6~
        sage: F.special_nodes()
        (0, 1, 6)
        sage: F(1)^2
        pi[6]

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['D',4,2]); F
        Fundamental group of type ['C', 3, 1]^*
        sage: F.cartan_type().dynkin_diagram()
        O=<=O---O=>=O
        0   1   2   3
        C3~*
        sage: F.special_nodes()
        (0, 3)

    We also implement a fundamental group for `GL_n`. It is defined to be the group of integers, which is the
    covering group of the fundamental group Z/nZ for affine `SL_n`::

        sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True); F
        Fundamental group of GL(3)
        sage: x = F.an_element(); x
        pi[5]
        sage: x*x
        pi[10]
        sage: x.inverse()
        pi[-5]
        sage: wt = F.cartan_type().classical().root_system().ambient_space().an_element(); wt
        (2, 2, 3)
        sage: x.act_on_classical_ambient(wt)
        (2, 3, 2)
        sage: w = WeylGroup(F.cartan_type(),prefix="s").an_element(); w
        s0*s1*s2
        sage: x.act_on_affine_weyl(w)
        s2*s0*s1
    """
    cartan_type = CartanType(cartan_type)
    if cartan_type.is_finite():
        cartan_type = cartan_type.affine()
    if not cartan_type.is_affine():
        raise NotImplementedError("Cartan type is not affine")
    if general_linear is True:
        if cartan_type.is_untwisted_affine() and cartan_type.type() == "A":
            return FundamentalGroupGL(cartan_type, prefix)
        else:
            raise ValueError("General Linear Fundamental group is untwisted type A")
    return FundamentalGroupOfExtendedAffineWeylGroup_Class(cartan_type,prefix,finite=True)