def matrix_of_frobenius(self, p, prec=20): # BUG: should get this method from HyperellipticCurve_generic def my_chage_ring(self, R): from constructor import HyperellipticCurve f, h = self._hyperelliptic_polynomials y = self._printing_ring.gen() x = self._printing_ring.base_ring().gen() return HyperellipticCurve(f.change_ring(R), h, "%s,%s"%(x,y)) import sage.schemes.elliptic_curves.monsky_washnitzer as monsky_washnitzer if is_pAdicField(p) or is_pAdicRing(p): K = p else: K = pAdicField(p, prec) frob_p, forms = monsky_washnitzer.matrix_of_frobenius_hyperelliptic(my_chage_ring(self, K)) return frob_p
def matrix_of_frobenius(self, p, prec=20): # BUG: should get this method from HyperellipticCurve_generic def my_chage_ring(self, R): from constructor import HyperellipticCurve f, h = self._hyperelliptic_polynomials y = self._printing_ring.gen() x = self._printing_ring.base_ring().gen() return HyperellipticCurve(f.change_ring(R), h, "%s,%s" % (x, y)) import sage.schemes.elliptic_curves.monsky_washnitzer as monsky_washnitzer if is_pAdicField(p) or is_pAdicRing(p): K = p else: K = pAdicField(p, prec) frob_p, forms = monsky_washnitzer.matrix_of_frobenius_hyperelliptic( my_chage_ring(self, K)) return frob_p
def create_object(self, version, key, **kwds): """ Create an object from a ``UniqueFactory`` key. EXAMPLES:: sage: E = EllipticCurve.create_object(0, (GF(3), (1, 2, 0, 1, 2))) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> .. NOTE:: Keyword arguments are currently only passed to the constructor for elliptic curves over `\\QQ`; elliptic curves over other fields do not support them. """ R, x = key if R is rings.QQ: from .ell_rational_field import EllipticCurve_rational_field return EllipticCurve_rational_field(x, **kwds) elif is_NumberField(R): from .ell_number_field import EllipticCurve_number_field return EllipticCurve_number_field(R, x) elif rings.is_pAdicField(R): from .ell_padic_field import EllipticCurve_padic_field return EllipticCurve_padic_field(R, x) elif is_FiniteField(R) or (is_IntegerModRing(R) and R.characteristic().is_prime()): from .ell_finite_field import EllipticCurve_finite_field return EllipticCurve_finite_field(R, x) elif R in _Fields: from .ell_field import EllipticCurve_field return EllipticCurve_field(R, x) from .ell_generic import EllipticCurve_generic return EllipticCurve_generic(R, x)
def create_object(self, version, key, **kwds): """ Create an object from a ``UniqueFactory`` key. EXAMPLES:: sage: E = EllipticCurve.create_object(0, (GF(3), (1, 2, 0, 1, 2))) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> .. NOTE:: Keyword arguments are currently only passed to the constructor for elliptic curves over `\\QQ`; elliptic curves over other fields do not support them. """ R, x = key if R is rings.QQ: from ell_rational_field import EllipticCurve_rational_field return EllipticCurve_rational_field(x, **kwds) elif is_NumberField(R): from ell_number_field import EllipticCurve_number_field return EllipticCurve_number_field(R, x) elif rings.is_pAdicField(R): from ell_padic_field import EllipticCurve_padic_field return EllipticCurve_padic_field(R, x) elif is_FiniteField(R) or (is_IntegerModRing(R) and R.characteristic().is_prime()): from ell_finite_field import EllipticCurve_finite_field return EllipticCurve_finite_field(R, x) elif R in _Fields: from ell_field import EllipticCurve_field return EllipticCurve_field(R, x) from ell_generic import EllipticCurve_generic return EllipticCurve_generic(R, x)
def EllipticCurve(x=None, y=None, j=None, minimal_twist=True): r""" There are several ways to construct an elliptic curve: .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. - EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - EllipticCurve([a4,a6]): Same as above, but a1=a2=a3=0. - EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as "11a" or "37b2". The letters in the label *must* be lower case (Cremona's new labeling). - EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over R with given a-invariants. Here R can be an arbitrary ring. Note that addition need not be defined. - EllipticCurve(j=j0) or EllipticCurve_from_j(j0): Return an elliptic curve with j-invariant `j0`. In each case above where the input is a list of length 2 or 5, one can instead give a 2 or 5-tuple instead. EXAMPLES: We illustrate creating elliptic curves. :: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Old Cremona labels are allowed:: sage: EllipticCurve('2400FF') Elliptic Curve defined by y^2 = x^3 + x^2 + 2*x + 8 over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 101 In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 95 The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See trac #6657:: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 By default, when a rational value of `j` is given, the constructed curve is a minimal twist (minimal conductor for curves with that `j`-invariant). This can be changed by setting the optional parameter ``minimal_twist``, which is True by default, to False:: sage: EllipticCurve(j=100) Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E =EllipticCurve(j=100); E Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E.conductor() 33129800 sage: E.j_invariant() 100 sage: E =EllipticCurve(j=100, minimal_twist=False); E Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field sage: E.conductor() 298168200 sage: E.j_invariant() 100 Without this option, constructing the curve could take a long time since both `j` and `j-1728` have to be factored to compute the minimal twist (see :trac:`13100`):: sage: E = EllipticCurve_from_j(2^256+1,minimal_twist=False) sage: E.j_invariant() == 2^256+1 True TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See trac #6657:: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See trac #9816:: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Symbolic Ring sage: SR in Fields() True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Fraction Field of Univariate Polynomial Ring in t over Rational Field See :trac:`12517`:: sage: E = EllipticCurve([1..5]) sage: EllipticCurve(E.a_invariants()) Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field See :trac:`11773`:: sage: E = EllipticCurve() Traceback (most recent call last): ... TypeError: invalid input to EllipticCurve constructor """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if rings.is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s"%j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j, minimal_twist) if x is None: raise TypeError, "invalid input to EllipticCurve constructor" if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if rings.is_MPolynomial(x) and y is None: f = x if f.degree() != 3: raise ValueError, "Elliptic curves must be defined by a cubic polynomial." if f.degrees() == (3,2): x, y = f.parent().gens() elif f.degree() == (2,3): y, x = f.parent().gens() elif len(f.parent().gens()) == 2 or len(f.parent().gens()) == 3 and f.is_homogeneous(): # We'd need a point too... raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." else: raise ValueError, "Defining polynomial must be a cubic polynomial in two variables." try: if f.coefficient(x**3) < 0: f = -f # is there a nicer way to extract the coefficients? a1 = a2 = a3 = a4 = a6 = 0 for coeff, mon in f: if mon == x**3: assert coeff == 1 elif mon == x**2: a2 = coeff elif mon == x: a4 = coeff elif mon == 1: a6 = coeff elif mon == y**2: assert coeff == -1 elif mon == x*y: a1 = -coeff elif mon == y: a3 = -coeff else: assert False return EllipticCurve([a1, a2, a3, a4, a6]) except AssertionError: raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." if rings.is_Ring(x): if rings.is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_FiniteField(x) or (rings.is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif x in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, str): return ell_rational_field.EllipticCurve_rational_field(x) if rings.is_RingElement(x) and y is None: raise TypeError, "invalid input to EllipticCurve constructor" if not isinstance(x, (list, tuple)): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2,5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_FiniteField(R) or (rings.is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif R in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)
def HyperellipticCurve(f,h=None,names=None,PP=None): r""" Returns the hyperelliptic curve `y^2 + h y = f`, for univariate polynomials `h` and `f`. If `h` is not given, then it defaults to 0. INPUT: - ``f`` - univariate polynomial - ``h`` - optional univariate polynomial EXAMPLES: A curve with and without the h term:: sage: R.<x> = QQ[] sage: HyperellipticCurve(x^5 + x + 1) Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1 sage: HyperellipticCurve(x^19 + x + 1, x-2) Hyperelliptic Curve over Rational Field defined by y^2 + (x - 2)*y = x^19 + x + 1 A curve over a non-prime finite field:: sage: k.<a> = GF(9); R.<x> = k[] sage: HyperellipticCurve(x^3 + x - 1, x+a) Hyperelliptic Curve over Finite Field in a of size 3^2 defined by y^2 + (x + a)*y = x^3 + x + 2 Here's one where we change the names of the vars in the homogeneous polynomial:: sage: k.<a> = GF(9); R.<x> = k[] sage: HyperellipticCurve(x^3 + x - 1, x+a, names=['X','Y']) Hyperelliptic Curve over Finite Field in a of size 3^2 defined by Y^2 + (X + a)*Y = X^3 + X + 2 """ if not is_Polynomial(f): raise TypeError, "Arguments f (=%s) and h (= %s) must be polynomials"%(f,h) P = f.parent() if h is None: h = P(0) g = (f.degree()-1)%2 try: h = P(h) except TypeError: raise TypeError, \ "Arguments f (=%s) and h (= %s) must be polynomials in the same ring"%(f,h) df = f.degree() dh_2 = 2*h.degree() if dh_2 < df: g = (df-1)//2 elif df < dh_2: g = (dh_2-1)//2 else: a0 = f.leading_coefficient() b0 = h.leading_coefficient() A0 = 4*a0 + b0^2 if A0 != 0: g = (df-1)//2 else: if P(2) == 0: raise TypeError, "Arguments define a curve with finite singularity." f0 = 4*f + h^2 d0 = f0.degree() g = (d0-1)//2 R = P.base_ring() PP = ProjectiveSpace(2, R) if names is None: names = ["x","y"] if is_FiniteField(R): if g == 2: return HyperellipticCurve_g2_finite_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_finite_field(PP, f, h, names=names, genus=g) elif is_RationalField(R): if g == 2: return HyperellipticCurve_g2_rational_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_rational_field(PP, f, h, names=names, genus=g) elif is_pAdicField(R): if g == 2: return HyperellipticCurve_g2_padic_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_padic_field(PP, f, h, names=names, genus=g) else: if g == 2: return HyperellipticCurve_g2_generic(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_generic(PP, f, h, names=names, genus=g)
def EllipticCurve(x=None, y=None, j=None, minimal_twist=True): r""" Construct an elliptic curve. In Sage, an elliptic curve is always specified by its a-invariants .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. INPUT: There are several ways to construct an elliptic curve: - ``EllipticCurve([a1,a2,a3,a4,a6])``: Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - ``EllipticCurve([a4,a6])``: Same as above, but `a_1=a_2=a_3=0`. - ``EllipticCurve(label)``: Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as ``"11a"`` or ``"37b2"``. The letters in the label *must* be lower case (Cremona's new labeling). - ``EllipticCurve(R, [a1,a2,a3,a4,a6])``: Create the elliptic curve over ``R`` with given a-invariants. Here ``R`` can be an arbitrary ring. Note that addition need not be defined. - ``EllipticCurve(j=j0)`` or ``EllipticCurve_from_j(j0)``: Return an elliptic curve with j-invariant ``j0``. - ``EllipticCurve(polynomial)``: Read off the a-invariants from the polynomial coefficients, see :func:`EllipticCurve_from_Weierstrass_polynomial`. In each case above where the input is a list of length 2 or 5, one can instead give a 2 or 5-tuple instead. EXAMPLES: We illustrate creating elliptic curves:: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Old Cremona labels are allowed:: sage: EllipticCurve('2400FF') Elliptic Curve defined by y^2 = x^3 + x^2 + 2*x + 8 over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 101 In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 95 The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See :trac:`6657` :: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 By default, when a rational value of `j` is given, the constructed curve is a minimal twist (minimal conductor for curves with that `j`-invariant). This can be changed by setting the optional parameter ``minimal_twist``, which is True by default, to False:: sage: EllipticCurve(j=100) Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E =EllipticCurve(j=100); E Elliptic Curve defined by y^2 = x^3 + x^2 + 3392*x + 307888 over Rational Field sage: E.conductor() 33129800 sage: E.j_invariant() 100 sage: E =EllipticCurve(j=100, minimal_twist=False); E Elliptic Curve defined by y^2 = x^3 + 488400*x - 530076800 over Rational Field sage: E.conductor() 298168200 sage: E.j_invariant() 100 Without this option, constructing the curve could take a long time since both `j` and `j-1728` have to be factored to compute the minimal twist (see :trac:`13100`):: sage: E = EllipticCurve_from_j(2^256+1,minimal_twist=False) sage: E.j_invariant() == 2^256+1 True TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See :trac:`6657` :: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See :trac:`9816` :: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Symbolic Ring sage: SR in Fields() True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Fraction Field of Univariate Polynomial Ring in t over Rational Field See :trac:`12517`:: sage: E = EllipticCurve([1..5]) sage: EllipticCurve(E.a_invariants()) Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field See :trac:`11773`:: sage: E = EllipticCurve() Traceback (most recent call last): ... TypeError: invalid input to EllipticCurve constructor """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s" % j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j, minimal_twist) if x is None: raise TypeError, "invalid input to EllipticCurve constructor" if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if is_MPolynomial(x): if y is None: return EllipticCurve_from_Weierstrass_polynomial(x) else: return EllipticCurve_from_cubic(x, y, morphism=False) if is_Ring(x): if is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif is_FiniteField(x) or (is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif x in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, basestring): return ell_rational_field.EllipticCurve_rational_field(x) if is_RingElement(x) and y is None: raise TypeError, "invalid input to EllipticCurve constructor" if not isinstance(x, (list, tuple)): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2, 5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif is_FiniteField(R) or (is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif R in _Fields: return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)
def HyperellipticCurve(f, h=None, names=None, PP=None, check_squarefree=True): r""" Returns the hyperelliptic curve `y^2 + h y = f`, for univariate polynomials `h` and `f`. If `h` is not given, then it defaults to 0. INPUT: - ``f`` - univariate polynomial - ``h`` - optional univariate polynomial - ``names`` (default: ``["x","y"]``) - names for the coordinate functions - ``check_squarefree`` (default: ``True``) - test if the input defines a hyperelliptic curve when f is homogenized to degree `2g+2` and h to degree `g+1` for some g. .. WARNING:: When setting ``check_squarefree=False`` or using a base ring that is not a field, the output curves are not to be trusted. For example, the output of ``is_singular`` is always ``False``, without this being properly tested in that case. .. NOTE:: The words "hyperelliptic curve" are normally only used for curves of genus at least two, but this class allows more general smooth double covers of the projective line (conics and elliptic curves), even though the class is not meant for those and some outputs may be incorrect. EXAMPLES: Basic examples:: sage: R.<x> = QQ[] sage: HyperellipticCurve(x^5 + x + 1) Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1 sage: HyperellipticCurve(x^19 + x + 1, x-2) Hyperelliptic Curve over Rational Field defined by y^2 + (x - 2)*y = x^19 + x + 1 sage: k.<a> = GF(9); R.<x> = k[] sage: HyperellipticCurve(x^3 + x - 1, x+a) Hyperelliptic Curve over Finite Field in a of size 3^2 defined by y^2 + (x + a)*y = x^3 + x + 2 Characteristic two:: sage: P.<x> = GF(8,'a')[] sage: HyperellipticCurve(x^7+1, x) Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + x*y = x^7 + 1 sage: HyperellipticCurve(x^8+x^7+1, x^4+1) Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + (x^4 + 1)*y = x^8 + x^7 + 1 sage: HyperellipticCurve(x^8+1, x) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: highly singular at infinity. sage: HyperellipticCurve(x^8+x^7+1, x^4) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch. sage: F.<t> = PowerSeriesRing(FiniteField(2)) sage: P.<x> = PolynomialRing(FractionField(F)) sage: HyperellipticCurve(x^5+t, x) Hyperelliptic Curve over Laurent Series Ring in t over Finite Field of size 2 defined by y^2 + x*y = x^5 + t We can change the names of the variables in the output:: sage: k.<a> = GF(9); R.<x> = k[] sage: HyperellipticCurve(x^3 + x - 1, x+a, names=['X','Y']) Hyperelliptic Curve over Finite Field in a of size 3^2 defined by Y^2 + (X + a)*Y = X^3 + X + 2 This class also allows curves of genus zero or one, which are strictly speaking not hyperelliptic:: sage: P.<x> = QQ[] sage: HyperellipticCurve(x^2+1) Hyperelliptic Curve over Rational Field defined by y^2 = x^2 + 1 sage: HyperellipticCurve(x^4-1) Hyperelliptic Curve over Rational Field defined by y^2 = x^4 - 1 sage: HyperellipticCurve(x^3+2*x+2) Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + 2*x + 2 Double roots:: sage: P.<x> = GF(7)[] sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1)) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch. sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1), check_squarefree=False) Hyperelliptic Curve over Finite Field of size 7 defined by y^2 = x^12 + 5*x^10 + 4*x^9 + x^8 + 3*x^7 + 3*x^6 + 2*x^4 + 3*x^3 + 6*x^2 + 4*x + 3 The input for a (smooth) hyperelliptic curve of genus `g` should not contain polynomials of degree greater than `2g+2`. In the following example, the hyperelliptic curve has genus 2 and there exists a model `y^2 = F` of degree 6, so the model `y^2 + yh = f` of degree 200 is not allowed.:: sage: P.<x> = QQ[] sage: h = x^100 sage: F = x^6+1 sage: f = F-h^2/4 sage: HyperellipticCurve(f, h) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: highly singular at infinity. sage: HyperellipticCurve(F) Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 1 An example with a singularity over an inseparable extension of the base field:: sage: F.<t> = GF(5)[] sage: P.<x> = F[] sage: HyperellipticCurve(x^5+t) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch. Input with integer coefficients creates objects with the integers as base ring, but only checks smoothness over `\QQ`, not over Spec(`\ZZ`). In other words, it is checked that the discriminant is non-zero, but it is not checked whether the discriminant is a unit in `\ZZ^*`.:: sage: P.<x> = ZZ[] sage: HyperellipticCurve(3*x^7+6*x+6) Hyperelliptic Curve over Integer Ring defined by y^2 = 3*x^7 + 6*x + 6 """ if (not is_Polynomial(f)) or f == 0: raise TypeError, "Arguments f (=%s) and h (= %s) must be polynomials " \ "and f must be non-zero" % (f,h) P = f.parent() if h is None: h = P(0) try: h = P(h) except TypeError: raise TypeError, \ "Arguments f (=%s) and h (= %s) must be polynomials in the same ring"%(f,h) df = f.degree() dh_2 = 2*h.degree() if dh_2 < df: g = (df-1)//2 else: g = (dh_2-1)//2 if check_squarefree: # Assuming we are working over a field, this checks that after # resolving the singularity at infinity, we get a smooth double cover # of P^1. if P(2) == 0: # characteristic 2 if h == 0: raise ValueError, \ "In characteristic 2, argument h (= %s) must be non-zero."%h if h[g+1] == 0 and f[2*g+1]**2 == f[2*g+2]*h[g]**2: raise ValueError, "Not a hyperelliptic curve: " \ "highly singular at infinity." should_be_coprime = [h, f*h.derivative()**2+f.derivative()**2] else: # characteristic not 2 F = f + h**2/4 if not F.degree() in [2*g+1, 2*g+2]: raise ValueError, "Not a hyperelliptic curve: " \ "highly singular at infinity." should_be_coprime = [F, F.derivative()] try: smooth = should_be_coprime[0].gcd(should_be_coprime[1]).degree()==0 except (AttributeError, NotImplementedError, TypeError): try: smooth = should_be_coprime[0].resultant(should_be_coprime[1])!=0 except (AttributeError, NotImplementedError, TypeError): raise NotImplementedError, "Cannot determine whether " \ "polynomials %s have a common root. Use " \ "check_squarefree=False to skip this check." % \ should_be_coprime if not smooth: raise ValueError, "Not a hyperelliptic curve: " \ "singularity in the provided affine patch." R = P.base_ring() PP = ProjectiveSpace(2, R) if names is None: names = ["x","y"] if is_FiniteField(R): if g == 2: return HyperellipticCurve_g2_finite_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_finite_field(PP, f, h, names=names, genus=g) elif is_RationalField(R): if g == 2: return HyperellipticCurve_g2_rational_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_rational_field(PP, f, h, names=names, genus=g) elif is_pAdicField(R): if g == 2: return HyperellipticCurve_g2_padic_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_padic_field(PP, f, h, names=names, genus=g) else: if g == 2: return HyperellipticCurve_g2_generic(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_generic(PP, f, h, names=names, genus=g)
def HyperellipticCurve(f, h=None, names=None, PP=None, check_squarefree=True): r""" Returns the hyperelliptic curve `y^2 + h y = f`, for univariate polynomials `h` and `f`. If `h` is not given, then it defaults to 0. INPUT: - ``f`` - univariate polynomial - ``h`` - optional univariate polynomial - ``names`` (default: ``["x","y"]``) - names for the coordinate functions - ``check_squarefree`` (default: ``True``) - test if the input defines a hyperelliptic curve when f is homogenized to degree `2g+2` and h to degree `g+1` for some g. .. WARNING:: When setting ``check_squarefree=False`` or using a base ring that is not a field, the output curves are not to be trusted. For example, the output of ``is_singular`` is always ``False``, without this being properly tested in that case. .. NOTE:: The words "hyperelliptic curve" are normally only used for curves of genus at least two, but this class allows more general smooth double covers of the projective line (conics and elliptic curves), even though the class is not meant for those and some outputs may be incorrect. EXAMPLES: Basic examples:: sage: R.<x> = QQ[] sage: HyperellipticCurve(x^5 + x + 1) Hyperelliptic Curve over Rational Field defined by y^2 = x^5 + x + 1 sage: HyperellipticCurve(x^19 + x + 1, x-2) Hyperelliptic Curve over Rational Field defined by y^2 + (x - 2)*y = x^19 + x + 1 sage: k.<a> = GF(9); R.<x> = k[] sage: HyperellipticCurve(x^3 + x - 1, x+a) Hyperelliptic Curve over Finite Field in a of size 3^2 defined by y^2 + (x + a)*y = x^3 + x + 2 Characteristic two:: sage: P.<x> = GF(8,'a')[] sage: HyperellipticCurve(x^7+1, x) Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + x*y = x^7 + 1 sage: HyperellipticCurve(x^8+x^7+1, x^4+1) Hyperelliptic Curve over Finite Field in a of size 2^3 defined by y^2 + (x^4 + 1)*y = x^8 + x^7 + 1 sage: HyperellipticCurve(x^8+1, x) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: highly singular at infinity. sage: HyperellipticCurve(x^8+x^7+1, x^4) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch. sage: F.<t> = PowerSeriesRing(FiniteField(2)) sage: P.<x> = PolynomialRing(FractionField(F)) sage: HyperellipticCurve(x^5+t, x) Hyperelliptic Curve over Laurent Series Ring in t over Finite Field of size 2 defined by y^2 + x*y = x^5 + t We can change the names of the variables in the output:: sage: k.<a> = GF(9); R.<x> = k[] sage: HyperellipticCurve(x^3 + x - 1, x+a, names=['X','Y']) Hyperelliptic Curve over Finite Field in a of size 3^2 defined by Y^2 + (X + a)*Y = X^3 + X + 2 This class also allows curves of genus zero or one, which are strictly speaking not hyperelliptic:: sage: P.<x> = QQ[] sage: HyperellipticCurve(x^2+1) Hyperelliptic Curve over Rational Field defined by y^2 = x^2 + 1 sage: HyperellipticCurve(x^4-1) Hyperelliptic Curve over Rational Field defined by y^2 = x^4 - 1 sage: HyperellipticCurve(x^3+2*x+2) Hyperelliptic Curve over Rational Field defined by y^2 = x^3 + 2*x + 2 Double roots:: sage: P.<x> = GF(7)[] sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1)) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch. sage: HyperellipticCurve((x^3-x+2)^2*(x^6-1), check_squarefree=False) Hyperelliptic Curve over Finite Field of size 7 defined by y^2 = x^12 + 5*x^10 + 4*x^9 + x^8 + 3*x^7 + 3*x^6 + 2*x^4 + 3*x^3 + 6*x^2 + 4*x + 3 The input for a (smooth) hyperelliptic curve of genus `g` should not contain polynomials of degree greater than `2g+2`. In the following example, the hyperelliptic curve has genus 2 and there exists a model `y^2 = F` of degree 6, so the model `y^2 + yh = f` of degree 200 is not allowed.:: sage: P.<x> = QQ[] sage: h = x^100 sage: F = x^6+1 sage: f = F-h^2/4 sage: HyperellipticCurve(f, h) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: highly singular at infinity. sage: HyperellipticCurve(F) Hyperelliptic Curve over Rational Field defined by y^2 = x^6 + 1 An example with a singularity over an inseparable extension of the base field:: sage: F.<t> = GF(5)[] sage: P.<x> = F[] sage: HyperellipticCurve(x^5+t) Traceback (most recent call last): ... ValueError: Not a hyperelliptic curve: singularity in the provided affine patch. Input with integer coefficients creates objects with the integers as base ring, but only checks smoothness over `\QQ`, not over Spec(`\ZZ`). In other words, it is checked that the discriminant is non-zero, but it is not checked whether the discriminant is a unit in `\ZZ^*`.:: sage: P.<x> = ZZ[] sage: HyperellipticCurve(3*x^7+6*x+6) Hyperelliptic Curve over Integer Ring defined by y^2 = 3*x^7 + 6*x + 6 """ if (not is_Polynomial(f)) or f == 0: raise TypeError, "Arguments f (=%s) and h (= %s) must be polynomials " \ "and f must be non-zero" % (f,h) P = f.parent() if h is None: h = P(0) try: h = P(h) except TypeError: raise TypeError, \ "Arguments f (=%s) and h (= %s) must be polynomials in the same ring"%(f,h) df = f.degree() dh_2 = 2 * h.degree() if dh_2 < df: g = (df - 1) // 2 else: g = (dh_2 - 1) // 2 if check_squarefree: # Assuming we are working over a field, this checks that after # resolving the singularity at infinity, we get a smooth double cover # of P^1. if P(2) == 0: # characteristic 2 if h == 0: raise ValueError, \ "In characteristic 2, argument h (= %s) must be non-zero."%h if h[g + 1] == 0 and f[2 * g + 1]**2 == f[2 * g + 2] * h[g]**2: raise ValueError, "Not a hyperelliptic curve: " \ "highly singular at infinity." should_be_coprime = [h, f * h.derivative()**2 + f.derivative()**2] else: # characteristic not 2 F = f + h**2 / 4 if not F.degree() in [2 * g + 1, 2 * g + 2]: raise ValueError, "Not a hyperelliptic curve: " \ "highly singular at infinity." should_be_coprime = [F, F.derivative()] try: smooth = should_be_coprime[0].gcd( should_be_coprime[1]).degree() == 0 except (AttributeError, NotImplementedError, TypeError): try: smooth = should_be_coprime[0].resultant( should_be_coprime[1]) != 0 except (AttributeError, NotImplementedError, TypeError): raise NotImplementedError, "Cannot determine whether " \ "polynomials %s have a common root. Use " \ "check_squarefree=False to skip this check." % \ should_be_coprime if not smooth: raise ValueError, "Not a hyperelliptic curve: " \ "singularity in the provided affine patch." R = P.base_ring() PP = ProjectiveSpace(2, R) if names is None: names = ["x", "y"] if is_FiniteField(R): if g == 2: return HyperellipticCurve_g2_finite_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_finite_field(PP, f, h, names=names, genus=g) elif is_RationalField(R): if g == 2: return HyperellipticCurve_g2_rational_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_rational_field(PP, f, h, names=names, genus=g) elif is_pAdicField(R): if g == 2: return HyperellipticCurve_g2_padic_field(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_padic_field(PP, f, h, names=names, genus=g) else: if g == 2: return HyperellipticCurve_g2_generic(PP, f, h, names=names, genus=g) else: return HyperellipticCurve_generic(PP, f, h, names=names, genus=g)
def EllipticCurve(x=None, y=None, j=None): r""" There are several ways to construct an elliptic curve: .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. - EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - EllipticCurve([a4,a6]): Same as above, but a1=a2=a3=0. - EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as "11a" or "37b2". The letters in the label *must* be lower case (Cremona's new labeling). - EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over R with given a-invariants. Here R can be an arbitrary ring. Note that addition need not be defined. - EllipticCurve(j): Return an elliptic curve with j-invariant `j`. Warning: this is deprecated. Use ``EllipticCurve_from_j(j)`` or ``EllipticCurve(j=j)`` instead. In each case above where the input is a list of length 2 or 5, one can instead give a 2 or 5-tuple instead. EXAMPLES: We illustrate creating elliptic curves. :: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 101 In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic_with_category'> sage: E.category() Category of schemes over Ring of integers modulo 95 The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See trac #6657:: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See trac #6657:: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See trac #9816:: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Symbolic Ring sage: is_field(SR) True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field_with_category'> sage: E.category() Category of schemes over Fraction Field of Univariate Polynomial Ring in t over Rational Field See :trac:`12517`:: sage: E = EllipticCurve([1..5]) sage: EllipticCurve(E.a_invariants()) Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if rings.is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s"%j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j) assert x is not None if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if rings.is_MPolynomial(x) and y is None: f = x if f.degree() != 3: raise ValueError, "Elliptic curves must be defined by a cubic polynomial." if f.degrees() == (3,2): x, y = f.parent().gens() elif f.degree() == (2,3): y, x = f.parent().gens() elif len(f.parent().gens()) == 2 or len(f.parent().gens()) == 3 and f.is_homogeneous(): # We'd need a point too... raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." else: raise ValueError, "Defining polynomial must be a cubic polynomial in two variables." try: if f.coefficient(x**3) < 0: f = -f # is there a nicer way to extract the coefficients? a1 = a2 = a3 = a4 = a6 = 0 for coeff, mon in f: if mon == x**3: assert coeff == 1 elif mon == x**2: a2 = coeff elif mon == x: a4 = coeff elif mon == 1: a6 = coeff elif mon == y**2: assert coeff == -1 elif mon == x*y: a1 = -coeff elif mon == y: a3 = -coeff else: assert False return EllipticCurve([a1, a2, a3, a4, a6]) except AssertionError: raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." if rings.is_Ring(x): if rings.is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_FiniteField(x) or (rings.is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_Field(x): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, str): return ell_rational_field.EllipticCurve_rational_field(x) if rings.is_RingElement(x) and y is None: from sage.misc.misc import deprecation deprecation("'EllipticCurve(j)' is deprecated; use 'EllipticCurve_from_j(j)' or 'EllipticCurve(j=j)' instead.") # Fixed for all characteristics and cases by John Cremona j=x F=j.parent().fraction_field() char=F.characteristic() if char==2: if j==0: return EllipticCurve(F, [ 0, 0, 1, 0, 0 ]) else: return EllipticCurve(F, [ 1, 0, 0, 0, 1/j ]) if char==3: if j==0: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) else: return EllipticCurve(F, [ 0, j, 0, 0, -j**2 ]) if j == 0: return EllipticCurve(F, [ 0, 0, 0, 0, 1 ]) if j == 1728: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) k=j-1728 return EllipticCurve(F, [0,0,0,-3*j*k, -2*j*k**2]) if not isinstance(x, (list, tuple)): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2,5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_FiniteField(R) or (rings.is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_Field(R): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)
def EllipticCurve(x=None, y=None, j=None): r""" There are several ways to construct an elliptic curve: .. math:: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6. - EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve with given a-invariants. The invariants are coerced into the parent of the first element. If all are integers, they are coerced into the rational numbers. - EllipticCurve([a4,a6]): Same as above, but a1=a2=a3=0. - EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with the given label. The label is a string, such as "11a" or "37b2". The letters in the label *must* be lower case (Cremona's new labeling). - EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over R with given a-invariants. Here R can be an arbitrary ring. Note that addition need not be defined. - EllipticCurve(j): Return an elliptic curve with j-invariant `j`. Warning: this is deprecated. Use ``EllipticCurve_from_j(j)`` or ``EllipticCurve(j=j)`` instead. EXAMPLES: We illustrate creating elliptic curves. :: sage: EllipticCurve([0,0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field We create a curve from a Cremona label:: sage: EllipticCurve('37b2') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational Field sage: EllipticCurve('5077a') Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field sage: EllipticCurve('389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field Unicode labels are allowed:: sage: EllipticCurve(u'389a') Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field We create curves over a finite field as follows:: sage: EllipticCurve([GF(5)(0),0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 sage: EllipticCurve(GF(5), [0, 0,1,-1,0]) Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5 Elliptic curves over `\ZZ/N\ZZ` with `N` prime are of type "elliptic curve over a finite field":: sage: F = Zmod(101) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 101 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_finite_field.EllipticCurve_finite_field'> In contrast, elliptic curves over `\ZZ/N\ZZ` with `N` composite are of type "generic elliptic curve":: sage: F = Zmod(95) sage: EllipticCurve(F, [2, 3]) Elliptic Curve defined by y^2 = x^3 + 2*x + 3 over Ring of integers modulo 95 sage: E = EllipticCurve([F(2), F(3)]) sage: type(E) <class 'sage.schemes.elliptic_curves.ell_generic.EllipticCurve_generic'> The following is a curve over the complex numbers:: sage: E = EllipticCurve(CC, [0,0,1,-1,0]) sage: E Elliptic Curve defined by y^2 + 1.00000000000000*y = x^3 + (-1.00000000000000)*x over Complex Field with 53 bits of precision sage: E.j_invariant() 2988.97297297297 We can also create elliptic curves by giving the Weierstrass equation:: sage: x, y = var('x,y') sage: EllipticCurve(y^2 + y == x^3 + x - 9) Elliptic Curve defined by y^2 + y = x^3 + x - 9 over Rational Field sage: R.<x,y> = GF(5)[] sage: EllipticCurve(x^3 + x^2 + 2 - y^2 - y*x) Elliptic Curve defined by y^2 + x*y = x^3 + x^2 + 2 over Finite Field of size 5 We can explicitly specify the `j`-invariant:: sage: E = EllipticCurve(j=1728); E; E.j_invariant(); E.label() Elliptic Curve defined by y^2 = x^3 - x over Rational Field 1728 '32a2' sage: E = EllipticCurve(j=GF(5)(2)); E; E.j_invariant() Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 5 2 See trac #6657:: sage: EllipticCurve(GF(144169),j=1728) Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 144169 TESTS:: sage: R = ZZ['u', 'v'] sage: EllipticCurve(R, [1,1]) Elliptic Curve defined by y^2 = x^3 + x + 1 over Multivariate Polynomial Ring in u, v over Integer Ring We create a curve and a point over QQbar (see #6879):: sage: E = EllipticCurve(QQbar,[0,1]) sage: E(0) (0 : 1 : 0) sage: E.base_field() Algebraic Field sage: E = EllipticCurve(RR,[1,2]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: EllipticCurve(CC,[3,4]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 3.00000000000000*x + 4.00000000000000 over Complex Field with 53 bits of precision Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 2.00000000000000 over Real Field with 53 bits of precision Real Field with 53 bits of precision sage: E = EllipticCurve(QQbar,[5,6]); E; E.base_field() Elliptic Curve defined by y^2 = x^3 + 5*x + 6 over Algebraic Field Algebraic Field See trac #6657:: sage: EllipticCurve(3,j=1728) Traceback (most recent call last): ... ValueError: First parameter (if present) must be a ring when j is specified sage: EllipticCurve(GF(5),j=3/5) Traceback (most recent call last): ... ValueError: First parameter must be a ring containing 3/5 If the universe of the coefficients is a general field, the object constructed has type EllipticCurve_field. Otherwise it is EllipticCurve_generic. See trac #9816:: sage: E = EllipticCurve([QQbar(1),3]); E Elliptic Curve defined by y^2 = x^3 + x + 3 over Algebraic Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> sage: E = EllipticCurve([RR(1),3]); E Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 3.00000000000000 over Real Field with 53 bits of precision sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> sage: E = EllipticCurve([i,i]); E Elliptic Curve defined by y^2 = x^3 + I*x + I over Symbolic Ring sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> sage: is_field(SR) True sage: F = FractionField(PolynomialRing(QQ,'t')) sage: t = F.gen() sage: E = EllipticCurve([t,0]); E Elliptic Curve defined by y^2 = x^3 + t*x over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: type(E) <class 'sage.schemes.elliptic_curves.ell_field.EllipticCurve_field'> """ import ell_generic, ell_field, ell_finite_field, ell_number_field, ell_rational_field, ell_padic_field # here to avoid circular includes if j is not None: if not x is None: if rings.is_Ring(x): try: j = x(j) except (ZeroDivisionError, ValueError, TypeError): raise ValueError, "First parameter must be a ring containing %s"%j else: raise ValueError, "First parameter (if present) must be a ring when j is specified" return EllipticCurve_from_j(j) assert x is not None if is_SymbolicEquation(x): x = x.lhs() - x.rhs() if parent(x) is SR: x = x._polynomial_(rings.QQ['x', 'y']) if rings.is_MPolynomial(x) and y is None: f = x if f.degree() != 3: raise ValueError, "Elliptic curves must be defined by a cubic polynomial." if f.degrees() == (3,2): x, y = f.parent().gens() elif f.degree() == (2,3): y, x = f.parent().gens() elif len(f.parent().gens()) == 2 or len(f.parent().gens()) == 3 and f.is_homogeneous(): # We'd need a point too... raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." else: raise ValueError, "Defining polynomial must be a cubic polynomial in two variables." try: if f.coefficient(x**3) < 0: f = -f # is there a nicer way to extract the coefficients? a1 = a2 = a3 = a4 = a6 = 0 for coeff, mon in f: if mon == x**3: assert coeff == 1 elif mon == x**2: a2 = coeff elif mon == x: a4 = coeff elif mon == 1: a6 = coeff elif mon == y**2: assert coeff == -1 elif mon == x*y: a1 = -coeff elif mon == y: a3 = -coeff else: assert False return EllipticCurve([a1, a2, a3, a4, a6]) except AssertionError: raise NotImplementedError, "Construction of an elliptic curve from a generic cubic not yet implemented." if rings.is_Ring(x): if rings.is_RationalField(x): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_FiniteField(x) or (rings.is_IntegerModRing(x) and x.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_pAdicField(x): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_NumberField(x): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_Field(x): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y) if isinstance(x, unicode): x = str(x) if isinstance(x, str): return ell_rational_field.EllipticCurve_rational_field(x) if rings.is_RingElement(x) and y is None: from sage.misc.misc import deprecation deprecation("'EllipticCurve(j)' is deprecated; use 'EllipticCurve_from_j(j)' or 'EllipticCurve(j=j)' instead.") # Fixed for all characteristics and cases by John Cremona j=x F=j.parent().fraction_field() char=F.characteristic() if char==2: if j==0: return EllipticCurve(F, [ 0, 0, 1, 0, 0 ]) else: return EllipticCurve(F, [ 1, 0, 0, 0, 1/j ]) if char==3: if j==0: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) else: return EllipticCurve(F, [ 0, j, 0, 0, -j**2 ]) if j == 0: return EllipticCurve(F, [ 0, 0, 0, 0, 1 ]) if j == 1728: return EllipticCurve(F, [ 0, 0, 0, 1, 0 ]) k=j-1728 return EllipticCurve(F, [0,0,0,-3*j*k, -2*j*k**2]) if not isinstance(x,list): raise TypeError, "invalid input to EllipticCurve constructor" x = Sequence(x) if not (len(x) in [2,5]): raise ValueError, "sequence of coefficients must have length 2 or 5" R = x.universe() if isinstance(x[0], (rings.Rational, rings.Integer, int, long)): return ell_rational_field.EllipticCurve_rational_field(x, y) elif rings.is_NumberField(R): return ell_number_field.EllipticCurve_number_field(x, y) elif rings.is_pAdicField(R): return ell_padic_field.EllipticCurve_padic_field(x, y) elif rings.is_FiniteField(R) or (rings.is_IntegerModRing(R) and R.characteristic().is_prime()): return ell_finite_field.EllipticCurve_finite_field(x, y) elif rings.is_Field(R): return ell_field.EllipticCurve_field(x, y) return ell_generic.EllipticCurve_generic(x, y)