Пример #1
0
def is_cm_j_invariant(j):
    """
    Return whether or not this is a CM `j`-invariant.

    INPUT:

    - ``j`` -- an element of a number field `K`

    OUTPUT:

    A pair (bool, (d,f)) which is either (False, None) if `j` is not a
    CM j-invariant or (True, (d,f)) if `j` is the `j`-invariant of the
    imaginary quadratic order of discriminant `D=df^2` where `d` is
    the associated fundamental discriminant and `f` the index.

    .. note::

       The current implementation makes use of the classification of
       all orders of class number up to 100, and hence will raise an
       error if `j` is an algebraic integer of degree greater than
       this.  It would be possible to implement a more general
       version, using the fact that `d` must be supported on the
       primes dividing the discriminant of the minimal polynomial of
       `j`.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: is_cm_j_invariant(0)
        (True, (-3, 1))
        sage: is_cm_j_invariant(8000)
        (True, (-8, 1))

        sage: K.<a> = QuadraticField(5)
        sage: is_cm_j_invariant(282880*a + 632000)
        (True, (-20, 1))
        sage: K.<a> = NumberField(x^3 - 2)
        sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
        (True, (-3, 6))

    TESTS::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: all([is_cm_j_invariant(j) == (True, (d,f)) for d,f,j in cm_j_invariants_and_orders(QQ)])
        True

    """
    from sage.rings.all import NumberFieldElement
    if not isinstance(j, NumberFieldElement) and not j in QQ:
        raise NotImplementedError("is_cm_j_invariant() is only implemented for number field elements")
    if not j.is_integral():
        return False, None
    jpol = PolynomialRing(QQ,'x')([-j,1]) if j in QQ else j.absolute_minpoly()
    h = jpol.degree()
    if h>100:
        raise NotImplementedError("CM data only available for class numbers up to 100")
    for d,f in cm_orders(h):
        if jpol == hilbert_class_polynomial(d*f**2):
            return True, (d,f)
    return False, None
Пример #2
0
def is_cm_j_invariant(j, method='new'):
    """
    Return whether or not this is a CM `j`-invariant.

    INPUT:

    - ``j`` -- an element of a number field `K`

    OUTPUT:

    A pair (bool, (d,f)) which is either (False, None) if `j` is not a
    CM j-invariant or (True, (d,f)) if `j` is the `j`-invariant of the
    imaginary quadratic order of discriminant `D=df^2` where `d` is
    the associated fundamental discriminant and `f` the index.

    .. note::

       The current implementation makes use of the classification of
       all orders of class number up to 100, and hence will raise an
       error if `j` is an algebraic integer of degree greater than
       this.  It would be possible to implement a more general
       version, using the fact that `d` must be supported on the
       primes dividing the discriminant of the minimal polynomial of
       `j`.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: is_cm_j_invariant(0)
        (True, (-3, 1))
        sage: is_cm_j_invariant(8000)
        (True, (-8, 1))

        sage: K.<a> = QuadraticField(5)
        sage: is_cm_j_invariant(282880*a + 632000)
        (True, (-20, 1))
        sage: K.<a> = NumberField(x^3 - 2)
        sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
        (True, (-3, 6))

    TESTS::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: all([is_cm_j_invariant(j) == (True, (d,f)) for d,f,j in cm_j_invariants_and_orders(QQ)])
        True

    """
    # First we check that j is an algebraic number:

    from sage.rings.all import NumberFieldElement, NumberField
    if not isinstance(j, NumberFieldElement) and not j in QQ:
        raise NotImplementedError(
            "is_cm_j_invariant() is only implemented for number field elements"
        )

    # for j in ZZ we have a lookup-table:

    if j in ZZ:
        j = ZZ(j)
        table = dict([(jj, (d, f))
                      for d, f, jj in cm_j_invariants_and_orders(QQ)])
        if j in table:
            return True, table[j]
        return False, None

    # Otherwise if j is in Q then it is not integral so is not CM:

    if j in QQ:
        return False, None

    # Now j has degree at least 2.  If it is not integral so is not CM:

    if not j.is_integral():
        return False, None

    # Next we find its minimal polynomial and degree h, and if h is
    # less than the degree of j.parent() we recreate j as an element
    # of Q(j):

    jpol = PolynomialRing(QQ, 'x')([-j, 1
                                    ]) if j in QQ else j.absolute_minpoly()
    h = jpol.degree()

    # This will be used as a fall-back if we cannot determine the
    # result using local data.  For this to be necessary there would
    # have to be very few primes of degree 1 and norm under 1000,
    # since we only need to find one prime of degree 1, good
    # reduction for which a_P is nonzero.
    if method == 'old':
        if h > 100:
            raise NotImplementedError(
                "CM data only available for class numbers up to 100")
        for d, f in cm_orders(h):
            if jpol == hilbert_class_polynomial(d * f**2):
                return True, (d, f)
        return False, None

    # replace j by a clone whose parent is Q(j), if necessary:

    K = j.parent()
    if h < K.absolute_degree():
        K = NumberField(jpol, 'j')
        j = K.gen()

    # Construct an elliptic curve with j-invariant j, with
    # integral model:

    from sage.schemes.elliptic_curves.all import EllipticCurve
    E = EllipticCurve(j=j).integral_model()
    D = E.discriminant()
    prime_bound = 1000  # test primes of degree 1 up to this norm
    max_primes = 20  # test at most this many primes
    num_prime = 0
    cmd = 0
    cmf = 0

    # Test primes of good reduction.  If E has CM then for half the
    # primes P we will have a_P=0, and for all other prime P the CM
    # field is Q(sqrt(a_P^2-4N(P))).  Hence if these fields are
    # different for two primes then E does not have CM.  If they are
    # all equal for the primes tested, then we have a candidate CM
    # field.  Moreover the discriminant of the endomorphism ring
    # divides all the values a_P^2-4N(P), since that is the
    # discriminant of the order containing the Frobenius at P.  So we
    # end up with a finite number (usually one) of candidate
    # discriminants to test.  Each is tested by checking that its class
    # number is h, and if so then that j is a root of its Hilbert
    # class polynomial.  In practice non CM curves will be eliminated
    # by the local test at a small number of primes (probably just 2).

    for P in K.primes_of_degree_one_iter(prime_bound):
        if num_prime > max_primes:
            if cmd:  # we have a candidate CM field already
                break
            else:  # we need to try more primes
                max_primes *= 2
        if D.valuation(P) > 0:  # skip bad primes
            continue
        aP = E.reduction(P).trace_of_frobenius()
        if aP == 0:  # skip supersingular primes
            continue
        num_prime += 1
        DP = aP**2 - 4 * P.norm()
        dP = DP.squarefree_part()
        fP = ZZ(DP // dP).isqrt()
        if cmd == 0:  # first one, so store d and f
            cmd = dP
            cmf = fP
        elif cmd != dP:  # inconsistent with previous
            return False, None
        else:  # consistent d, so update f
            cmf = cmf.gcd(fP)

    if cmd == 0:  # no conclusion, we found no degree 1 primes, revert to old method
        return is_cm_j_invariant(j, method='old')

    # it looks like cm by disc cmd * f**2 where f divides cmf

    if cmd % 4 != 1:
        cmd = cmd * 4
        cmf = cmf // 2

    # Now we must check if h(cmd*f**2)==h for f|cmf; if so we check
    # whether j is a root of the associated Hilbert class polynomial.
    for f in cmf.divisors():  # only positive divisors
        d = cmd * f**2
        if h != d.class_number():
            continue
        pol = hilbert_class_polynomial(d)
        if pol(j) == 0:
            return True, (cmd, f)
    return False, None
Пример #3
0
Файл: cm.py Проект: shalec/sage
def is_cm_j_invariant(j):
    """
    Return whether or not this is a CM `j`-invariant.

    INPUT:

    - ``j`` -- an element of a number field `K`

    OUTPUT:

    A pair (bool, (d,f)) which is either (False, None) if `j` is not a
    CM j-invariant or (True, (d,f)) if `j` is the `j`-invariant of the
    imaginary quadratic order of discriminant `D=df^2` where `d` is
    the associated fundamental discriminant and `f` the index.

    .. note::

       The current implementation makes use of the classification of
       all orders of class number up to 100, and hence will raise an
       error if `j` is an algebraic integer of degree greater than
       this.  It would be possible to implement a more general
       version, using the fact that `d` must be supported on the
       primes dividing the discriminant of the minimal polynomial of
       `j`.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: is_cm_j_invariant(0)
        (True, (-3, 1))
        sage: is_cm_j_invariant(8000)
        (True, (-8, 1))

        sage: K.<a> = QuadraticField(5)
        sage: is_cm_j_invariant(282880*a + 632000)
        (True, (-20, 1))
        sage: K.<a> = NumberField(x^3 - 2)
        sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
        (True, (-3, 6))

    TESTS::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: all([is_cm_j_invariant(j) == (True, (d,f)) for d,f,j in cm_j_invariants_and_orders(QQ)])
        True

    """
    from sage.rings.all import NumberFieldElement
    if not isinstance(j, NumberFieldElement) and not j in QQ:
        raise NotImplementedError(
            "is_cm_j_invariant() is only implemented for number field elements"
        )
    if not j.is_integral():
        return False, None
    jpol = PolynomialRing(QQ, 'x')([-j, 1
                                    ]) if j in QQ else j.absolute_minpoly()
    h = jpol.degree()
    if h > 100:
        raise NotImplementedError(
            "CM data only available for class numbers up to 100")
    for d, f in cm_orders(h):
        if jpol == hilbert_class_polynomial(d * f**2):
            return True, (d, f)
    return False, None
Пример #4
0
def is_cm_j_invariant(j, method='new'):
    """
    Return whether or not this is a CM `j`-invariant.

    INPUT:

    - ``j`` -- an element of a number field `K`

    OUTPUT:

    A pair (bool, (d,f)) which is either (False, None) if `j` is not a
    CM j-invariant or (True, (d,f)) if `j` is the `j`-invariant of the
    imaginary quadratic order of discriminant `D=df^2` where `d` is
    the associated fundamental discriminant and `f` the index.

    .. note::

       The current implementation makes use of the classification of
       all orders of class number up to 100, and hence will raise an
       error if `j` is an algebraic integer of degree greater than
       this.  It would be possible to implement a more general
       version, using the fact that `d` must be supported on the
       primes dividing the discriminant of the minimal polynomial of
       `j`.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: is_cm_j_invariant(0)
        (True, (-3, 1))
        sage: is_cm_j_invariant(8000)
        (True, (-8, 1))

        sage: K.<a> = QuadraticField(5)
        sage: is_cm_j_invariant(282880*a + 632000)
        (True, (-20, 1))
        sage: K.<a> = NumberField(x^3 - 2)
        sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
        (True, (-3, 6))

    TESTS::

        sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
        sage: all([is_cm_j_invariant(j) == (True, (d,f)) for d,f,j in cm_j_invariants_and_orders(QQ)])
        True

    """
    # First we check that j is an algebraic number:

    from sage.rings.all import NumberFieldElement, NumberField
    if not isinstance(j, NumberFieldElement) and not j in QQ:
        raise NotImplementedError("is_cm_j_invariant() is only implemented for number field elements")

    # for j in ZZ we have a lookup-table:

    if j in ZZ:
        j = ZZ(j)
        table = dict([(jj,(d,f)) for d,f,jj in cm_j_invariants_and_orders(QQ)])
        if j in table:
            return True, table[j]
        return False, None

    # Otherwise if j is in Q then it is not integral so is not CM:

    if j in QQ:
        return False, None

    # Now j has degree at least 2.  If it is not integral so is not CM:

    if not j.is_integral():
        return False, None

    # Next we find its minimal polynomial and degree h, and if h is
    # less than the degree of j.parent() we recreate j as an element
    # of Q(j):

    jpol = PolynomialRing(QQ,'x')([-j,1]) if j in QQ else j.absolute_minpoly()
    h = jpol.degree()

    # This will be used as a fall-back if we cannot determine the
    # result using local data.  For this to be necessary there would
    # have to be very few primes of degree 1 and norm under 1000,
    # since we only need to find one prime of degree 1, good
    # reduction for which a_P is nonzero.
    if method=='old':
        if h>100:
            raise NotImplementedError("CM data only available for class numbers up to 100")
        for d,f in cm_orders(h):
            if jpol == hilbert_class_polynomial(d*f**2):
                return True, (d,f)
        return False, None

    # replace j by a clone whose parent is Q(j), if necessary:

    K = j.parent()
    if h < K.absolute_degree():
        K = NumberField(jpol, 'j')
        j = K.gen()

    # Construct an elliptic curve with j-invariant j, with
    # integral model:

    from sage.schemes.elliptic_curves.all import EllipticCurve
    E = EllipticCurve(j=j).integral_model()
    D = E.discriminant()
    prime_bound = 1000 # test primes of degree 1 up to this norm
    max_primes =    20 # test at most this many primes
    num_prime = 0
    cmd = 0
    cmf = 0

    # Test primes of good reduction.  If E has CM then for half the
    # primes P we will have a_P=0, and for all other prime P the CM
    # field is Q(sqrt(a_P^2-4N(P))).  Hence if these fields are
    # different for two primes then E does not have CM.  If they are
    # all equal for the primes tested, then we have a candidate CM
    # field.  Moreover the discriminant of the endomorphism ring
    # divides all the values a_P^2-4N(P), since that is the
    # discriminant of the order containing the Frobenius at P.  So we
    # end up with a finite number (usually one) of candidate
    # discriminats to test.  Each is tested by checking that its class
    # number is h, and if so then that j is a root of its Hilbert
    # class polynomial.  In practice non CM curves will be eliminated
    # by the local test at a small number of primes (probably just 2).

    for P in K.primes_of_degree_one_iter(prime_bound):
        if num_prime > max_primes:
            if cmd: # we have a candidate CM field already
                break
            else:   # we need to try more primes
                max_primes *=2
        if D.valuation(P)>0: # skip bad primes
            continue
        aP = E.reduction(P).trace_of_frobenius()
        if aP == 0: # skip supersingular primes
            continue
        num_prime += 1
        DP = aP**2 - 4*P.norm()
        dP = DP.squarefree_part()
        fP = ZZ(DP//dP).isqrt()
        if cmd==0:      # first one, so store d and f
            cmd = dP
            cmf = fP
        elif cmd != dP: # inconsistent with previous
            return False, None
        else:           # consistent d, so update f
            cmf = cmf.gcd(fP)

    if cmd==0: # no conclusion, we found no degree 1 primes, revert to old method
        return is_cm_j_invariant(j, method='old')

    # it looks like cm by disc cmd * f**2 where f divides cmf

    if cmd%4!=1:
        cmd = cmd*4
        cmf = cmf//2

    # Now we must check if h(cmd*f**2)==h for f|cmf; if so we check
    # whether j is a root of the associated Hilbert class polynomial.
    for f in cmf.divisors(): # only positive divisors
        d = cmd*f**2
        if h != d.class_number():
            continue
        pol = hilbert_class_polynomial(d)
        if pol(j)==0:
            return True, (cmd,f)
    return False, None