Пример #1
0
    def zeta_series(self, n, t):
        """
        Return the zeta series.

        Compute a power series approximation to the zeta function of a
        scheme over a finite field.

        INPUT:

        -  ``n`` -- the number of terms of the power series to
           compute

        -  ``t`` -- the variable which the series should be
           returned


        OUTPUT:

        A power series approximating the zeta function of self

        EXAMPLES::

            sage: P.<x> = PolynomialRing(GF(3))
            sage: C = HyperellipticCurve(x^3+x^2+1)
            sage: R.<t> = PowerSeriesRing(Integers())
            sage: C.zeta_series(4,t)
            1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)
            sage: (1+2*t+3*t^2)/(1-t)/(1-3*t) + O(t^5)
            1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)

        Note that this function depends on count_points, which is only
        defined for prime order fields for general schemes.
        Nonetheless, since :trac:`15108` and :trac:`15148`, it supports
        hyperelliptic curves over non-prime fields::

            sage: C.base_extend(GF(9,'a')).zeta_series(4,t)
            1 + 12*t + 120*t^2 + 1092*t^3 + 9840*t^4 + O(t^5)
        """

        F = self.base_ring()
        if not F.is_finite():
            raise TypeError(
                'zeta functions only defined for schemes over finite fields')
        try:
            a = self.count_points(n)
        except AttributeError:
            raise NotImplementedError(
                'count_points() required but not implemented')
        R = PowerSeriesRing(Rationals(), 'u')
        u = R.gen()
        temp = sum(a[i - 1] * (u.O(n + 1))**i / i for i in range(1, n + 1))
        temp2 = temp.exp()
        return (temp2(t).O(n + 1))
Пример #2
0
    def zeta_series(self, n, t):
        """
        Return the zeta series.

        Compute a power series approximation to the zeta function of a
        scheme over a finite field.

        INPUT:

        -  ``n`` - the number of terms of the power series to
           compute

        -  ``t`` - the variable which the series should be
           returned


        OUTPUT:

        A power series approximating the zeta function of self

        EXAMPLES::

            sage: P.<x> = PolynomialRing(GF(3))
            sage: C = HyperellipticCurve(x^3+x^2+1)
            sage: R.<t> = PowerSeriesRing(Integers())
            sage: C.zeta_series(4,t)
            1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)
            sage: (1+2*t+3*t^2)/(1-t)/(1-3*t) + O(t^5)
            1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)

        Note that this function depends on count_points, which is only
        defined for prime order fields::

            sage: C.base_extend(GF(9,'a')).zeta_series(4,t)
            Traceback (most recent call last):
            ...
            NotImplementedError: Point counting only implemented for schemes over prime fields
        """

        F = self.base_ring()
        if not F.is_finite():
            raise TypeError, "Zeta functions only defined for schemes over finite fields"
        a = self.count_points(n)
        R = PowerSeriesRing(Rationals(), 'u')
        u = R.gen()
        temp = sum(a[i - 1] * (u.O(n + 1))**i / i for i in range(1, n + 1))
        temp2 = temp.exp()
        return (temp2(t).O(n + 1))