Пример #1
0
def enumerate_totallyreal_fields_all(n, B, verbose=0, return_seqs=False):
    r"""
    Enumerates *all* totally real fields of degree `n` with discriminant `\le B`,
    primitive or otherwise.

    EXAMPLES::

        sage: enumerate_totallyreal_fields_all(4, 2000)
        [[725, x^4 - x^3 - 3*x^2 + x + 1],
        [1125, x^4 - x^3 - 4*x^2 + 4*x + 1],
        [1600, x^4 - 6*x^2 + 4],
        [1957, x^4 - 4*x^2 - x + 1],
        [2000, x^4 - 5*x^2 + 5]]

    In practice most of these will be found by :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim`, which is guaranteed to return all primitive fields but often returns many non-primitive ones as well. For instance, only one of the five fields in the example above is primitive, but :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim` finds four out of the five (the exception being `x^4 - 6x^2 + 4`).

    TESTS:

    The following was fixed in :trac:`13101`::

        sage: enumerate_totallyreal_fields_all(8, 10^6)  # long time (about 2 s)
        []
    """

    S = []
    counts = [0,0,0]
    if len(divisors(n)) > 4:
        raise ValueError, "Only implemented for n = p*q with p,q prime"
    for d in divisors(n):
        if d > 1 and d < n:
            Sds = enumerate_totallyreal_fields_prim(d, int(math.floor((1.*B)**(1.*d/n))), verbose=verbose)
            for i in range(len(Sds)):
                if verbose:
                    print "="*80
                    print "Taking F =", Sds[i][1]
                F = NumberField(ZZx(Sds[i][1]), 't')
                T = enumerate_totallyreal_fields_rel(F, n/d, B, verbose=verbose, return_seqs=return_seqs)
                if return_seqs:
                    for i in range(3):
                        counts[i] += T[0][i]
                    S += [[t[0],pari(t[1]).Polrev()] for t in T[1]]
                else:
                    S += [[t[0],t[1]] for t in T]
                j = i+1
                for E in enumerate_totallyreal_fields_prim(n/d, int(math.floor((1.*B)**(1./d)/(1.*Sds[i][0])**(n*1./d**2)))):
                    for EF in F.composite_fields(NumberField(ZZx(E[1]), 'u')):
                        if EF.degree() == n and EF.disc() <= B:
                            S.append([EF.disc(), pari(EF.absolute_polynomial())])
    S += enumerate_totallyreal_fields_prim(n, B, verbose=verbose)
    S.sort()
    weed_fields(S)

    # Output.
    if verbose:
        saveout = sys.stdout
        if type(verbose) == str:
            fsock = open(verbose, 'w')
            sys.stdout = fsock
        # Else, print to screen
        print "="*80
        print "Polynomials tested:", counts[0]
        print "Irreducible polynomials:", counts[1]
        print "Polynomials with nfdisc <= B:", counts[2]
        for i in range(len(S)):
            print S[i]
        if type(verbose) == str:
            fsock.close()
        sys.stdout = saveout

    if return_seqs:
        return [counts,[[s[0],s[1].reverse().Vec()] for s in S]]
    else:
        return S
Пример #2
0
def enumerate_totallyreal_fields_all(n,
                                     B,
                                     verbose=0,
                                     return_seqs=False,
                                     return_pari_objects=True):
    r"""
    Enumerates *all* totally real fields of degree ``n`` with discriminant
    at most ``B``, primitive or otherwise.

    INPUT:

    - ``n`` -- integer, the degree
    - ``B`` -- integer, the discriminant bound
    - ``verbose`` -- boolean or nonnegative integer or string (default: 0)
      give a verbose description of the computations being performed. If
      ``verbose`` is set to ``2`` or more then it outputs some extra
      information. If ``verbose`` is a string then it outputs to a file
      specified by ``verbose``
    - ``return_seqs`` -- (boolean, default False) If ``True``, then return
      the polynomials as sequences (for easier exporting to a file). This
      also returns a list of four numbers, as explained in the OUTPUT
      section below.
    - ``return_pari_objects`` -- (boolean, default: True) if both
      ``return_seqs`` and ``return_pari_objects`` are ``False`` then it
      returns the elements as Sage objects; otherwise it returns pari
      objects.

    EXAMPLES::

        sage: enumerate_totallyreal_fields_all(4, 2000)
        [[725, x^4 - x^3 - 3*x^2 + x + 1],
        [1125, x^4 - x^3 - 4*x^2 + 4*x + 1],
        [1600, x^4 - 6*x^2 + 4],
        [1957, x^4 - 4*x^2 - x + 1],
        [2000, x^4 - 5*x^2 + 5]]
        sage: enumerate_totallyreal_fields_all(1, 10)
        [[1, x - 1]]

    TESTS:

    Each of the outputs must be elements of Sage if ``return_pari_objects``
    is set to ``False``::

        sage: enumerate_totallyreal_fields_all(2, 10)
        [[5, x^2 - x - 1], [8, x^2 - 2]]
        sage: type(enumerate_totallyreal_fields_all(2, 10)[0][1])
        <type 'cypari2.gen.Gen'>
        sage: enumerate_totallyreal_fields_all(2, 10, return_pari_objects=False)[0][1].parent()
        Univariate Polynomial Ring in x over Rational Field


    In practice most of these will be found by
    :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim`,
    which is guaranteed to return all primitive fields but often returns
    many non-primitive ones as well. For instance, only one of the five
    fields in the example above is primitive, but
    :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim`
    finds four out of the five (the exception being `x^4 - 6x^2 + 4`).

    The following was fixed in :trac:`13101`::

        sage: enumerate_totallyreal_fields_all(8, 10^6)  # long time (about 2 s)
        []
    """

    S = []
    counts = [0, 0, 0, 0]
    if len(divisors(n)) > 4:
        raise ValueError("Only implemented for n = p*q with p,q prime")
    for d in divisors(n):
        if d > 1 and d < n:
            Sds = enumerate_totallyreal_fields_prim(
                d, int(math.floor((1. * B)**(1. * d / n))), verbose=verbose)
            for i in range(len(Sds)):
                if verbose:
                    print("=" * 80)
                    print("Taking F =", Sds[i][1])
                F = NumberField(ZZx(Sds[i][1]), 't')
                T = enumerate_totallyreal_fields_rel(F,
                                                     n / d,
                                                     B,
                                                     verbose=verbose,
                                                     return_seqs=return_seqs)
                if return_seqs:
                    for i in range(4):
                        counts[i] += T[0][i]
                    S += [[t[0], pari(t[1]).Polrev()] for t in T[1]]
                else:
                    S += [[t[0], t[1]] for t in T]
                for E in enumerate_totallyreal_fields_prim(
                        n / d,
                        int(
                            math.floor((1. * B)**(1. / d) /
                                       (1. * Sds[i][0])**(n * 1. / d**2)))):
                    for EF in F.composite_fields(NumberField(ZZx(E[1]), 'u')):
                        if EF.degree() == n and EF.disc() <= B:
                            S.append(
                                [EF.disc(),
                                 pari(EF.absolute_polynomial())])
    S += enumerate_totallyreal_fields_prim(n, B, verbose=verbose)
    S.sort(key=lambda x: (x[0], [QQ(cf) for cf in x[1].polrecip().Vec()]))
    weed_fields(S)

    # Output.
    if verbose:
        saveout = sys.stdout
        if isinstance(verbose, str):
            fsock = open(verbose, 'w')
            sys.stdout = fsock
        # Else, print to screen
        print("=" * 80)
        print("Polynomials tested: {}".format(counts[0]))
        print("Polynomials with discriminant with large enough square"
              " divisor: {}".format(counts[1]))
        print("Irreducible polynomials: {}".format(counts[2]))
        print("Polynomials with nfdisc <= B: {}".format(counts[3]))
        for i in range(len(S)):
            print(S[i])
        if isinstance(verbose, str):
            fsock.close()
        sys.stdout = saveout

    # Make sure to return elements that belong to Sage
    if return_seqs:
        return [[ZZ(_) for _ in counts],
                [[ZZ(s[0]), [QQ(_) for _ in s[1].polrecip().Vec()]]
                 for s in S]]
    elif return_pari_objects:
        return S
    else:
        Px = PolynomialRing(QQ, 'x')
        return [[ZZ(s[0]), Px([QQ(_) for _ in s[1].list()])] for s in S]
Пример #3
0
def enumerate_totallyreal_fields_all(n, B, verbose=0, return_seqs=False,
                                     return_pari_objects=True):
    r"""
    Enumerates *all* totally real fields of degree ``n`` with discriminant
    at most ``B``, primitive or otherwise.

    INPUT:

    - ``n`` -- integer, the degree
    - ``B`` -- integer, the discriminant bound
    - ``verbose`` -- boolean or nonnegative integer or string (default: 0)
      give a verbose description of the computations being performed. If
      ``verbose`` is set to ``2`` or more then it outputs some extra
      information. If ``verbose`` is a string then it outputs to a file
      specified by ``verbose``
    - ``return_seqs`` -- (boolean, default False) If ``True``, then return
      the polynomials as sequences (for easier exporting to a file). This
      also returns a list of four numbers, as explained in the OUTPUT
      section below.
    - ``return_pari_objects`` -- (boolean, default: True) if both
      ``return_seqs`` and ``return_pari_objects`` are ``False`` then it
      returns the elements as Sage objects; otherwise it returns pari
      objects.

    EXAMPLES::

        sage: enumerate_totallyreal_fields_all(4, 2000)
        [[725, x^4 - x^3 - 3*x^2 + x + 1],
        [1125, x^4 - x^3 - 4*x^2 + 4*x + 1],
        [1600, x^4 - 6*x^2 + 4],
        [1957, x^4 - 4*x^2 - x + 1],
        [2000, x^4 - 5*x^2 + 5]]
        sage: enumerate_totallyreal_fields_all(1, 10)
        [[1, x - 1]]

    TESTS:

    Each of the outputs must be elements of Sage if ``return_pari_objects``
    is set to ``False``::

        sage: enumerate_totallyreal_fields_all(2, 10)
        [[5, x^2 - x - 1], [8, x^2 - 2]]
        sage: enumerate_totallyreal_fields_all(2, 10)[0][1].parent()
        Interface to the PARI C library
        sage: enumerate_totallyreal_fields_all(2, 10, return_pari_objects=False)[0][1].parent()
        Univariate Polynomial Ring in x over Rational Field


    In practice most of these will be found by
    :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim`,
    which is guaranteed to return all primitive fields but often returns
    many non-primitive ones as well. For instance, only one of the five
    fields in the example above is primitive, but
    :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim`
    finds four out of the five (the exception being `x^4 - 6x^2 + 4`).

    The following was fixed in :trac:`13101`::

        sage: enumerate_totallyreal_fields_all(8, 10^6)  # long time (about 2 s)
        []
    """

    S = []
    counts = [0,0,0,0]
    if len(divisors(n)) > 4:
        raise ValueError("Only implemented for n = p*q with p,q prime")
    for d in divisors(n):
        if d > 1 and d < n:
            Sds = enumerate_totallyreal_fields_prim(d, int(math.floor((1.*B)**(1.*d/n))), verbose=verbose)
            for i in range(len(Sds)):
                if verbose:
                    print "="*80
                    print "Taking F =", Sds[i][1]
                F = NumberField(ZZx(Sds[i][1]), 't')
                T = enumerate_totallyreal_fields_rel(F, n/d, B, verbose=verbose, return_seqs=return_seqs)
                if return_seqs:
                    for i in range(4):
                        counts[i] += T[0][i]
                    S += [[t[0],pari(t[1]).Polrev()] for t in T[1]]
                else:
                    S += [[t[0],t[1]] for t in T]
                j = i+1
                for E in enumerate_totallyreal_fields_prim(n/d, int(math.floor((1.*B)**(1./d)/(1.*Sds[i][0])**(n*1./d**2)))):
                    for EF in F.composite_fields(NumberField(ZZx(E[1]), 'u')):
                        if EF.degree() == n and EF.disc() <= B:
                            S.append([EF.disc(), pari(EF.absolute_polynomial())])
    S += enumerate_totallyreal_fields_prim(n, B, verbose=verbose)
    S.sort(cmp=lambda x, y: cmp(x[0], y[0]) or cmp(x[1], y[1]))
    weed_fields(S)

    # Output.
    if verbose:
        saveout = sys.stdout
        if isinstance(verbose, str):
            fsock = open(verbose, 'w')
            sys.stdout = fsock
        # Else, print to screen
        print "="*80
        print "Polynomials tested: {}".format(counts[0])
        print ( "Polynomials with discriminant with large enough square"
                " divisor: {}".format(counts[1]))
        print "Irreducible polynomials: {}".format(counts[2])
        print "Polynomials with nfdisc <= B: {}".format(counts[3])
        for i in range(len(S)):
            print S[i]
        if isinstance(verbose, str):
            fsock.close()
        sys.stdout = saveout

    # Make sure to return elements that belong to Sage
    if return_seqs:
        return [[ZZ(_) for _ in counts],
                [[ZZ(s[0]), [QQ(_) for _ in s[1].polrecip().Vec()]] for s in S]]
    elif return_pari_objects:
        return S
    else:
        Px = PolynomialRing(QQ, 'x')
        return [[ZZ(s[0]), Px([QQ(_) for _ in s[1].list()])]
                for s in S]
Пример #4
0
def enumerate_totallyreal_fields_all(n, B, verbose=0, return_seqs=False):
    r"""
    Enumerates *all* totally real fields of degree `n` with discriminant `\le B`,
    primitive or otherwise.
    
    EXAMPLES::
    
        sage: enumerate_totallyreal_fields_all(4, 2000)
        [[725, x^4 - x^3 - 3*x^2 + x + 1], 
        [1125, x^4 - x^3 - 4*x^2 + 4*x + 1], 
        [1600, x^4 - 6*x^2 + 4], 
        [1957, x^4 - 4*x^2 - x + 1], 
        [2000, x^4 - 5*x^2 + 5]]
    
    In practice most of these will be found by :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim`, which is guaranteed to return all primitive fields but often returns many non-primitive ones as well. For instance, only one of the five fields in the example above is primitive, but :func:`~sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim` finds four out of the five (the exception being `x^4 - 6x^2 + 4`).
    """

    S = []
    counts = [0, 0, 0]
    if len(divisors(n)) > 4:
        raise ValueError, "Only implemented for n = p*q with p,q prime"
    for d in divisors(n):
        if d > 1 and d < n:
            Sds = enumerate_totallyreal_fields_prim(d, int(math.floor((1.0 * B) ** (1.0 * d / n))), verbose=verbose)
            for i in range(len(Sds)):
                if verbose:
                    print "=" * 80
                    print "Taking F =", Sds[i][1]
                F = NumberField(ZZx(Sds[i][1]), "t")
                T = enumerate_totallyreal_fields_rel(F, n / d, B, verbose=verbose, return_seqs=return_seqs)
                if return_seqs:
                    for i in range(3):
                        counts[i] += T[0][i]
                    S += [[t[0], pari(t[1]).Polrev()] for t in T[1]]
                else:
                    S += [[t[0], t[1]] for t in T]
                j = i + 1
                for E in enumerate_totallyreal_fields_prim(
                    n / d, int(math.floor((1.0 * B) ** (1.0 / d) / (1.0 * Sds[i][0]) ** (n * 1.0 / d ** 2)))
                ):
                    for EF in F.composite_fields(NumberField(ZZx(E[1]), "u")):
                        if EF.degree() == n and EF.disc() <= B:
                            S.append([EF.disc(), pari(EF.absolute_polynomial())])
    S += enumerate_totallyreal_fields_prim(n, B, verbose=verbose)
    S.sort()
    weed_fields(S)

    # Output.
    if verbose:
        saveout = sys.stdout
        if type(verbose) == str:
            fsock = open(verbose, "w")
            sys.stdout = fsock
        # Else, print to screen
        print "=" * 80
        print "Polynomials tested:", counts[0]
        print "Irreducible polynomials:", counts[1]
        print "Polynomials with nfdisc <= B:", counts[2]
        for i in range(len(S)):
            print S[i]
        if type(verbose) == str:
            fsock.close()
        sys.stdout = saveout

    if return_seqs:
        return [counts, [[s[0], s[1].reverse().Vec()] for s in S]]
    else:
        return S