Пример #1
0
    def Fan(self, n, deg_three_verts=False):
        """
        Sandpile on the Fan graph with a total of `n` vertices.

        INPUT:

        -  ``n`` -- a non-negative integer

        OUTPUT:

        - Sandpile

        EXAMPLES::

            sage: f = sandpiles.Fan(10)
            sage: f.group_order() == fibonacci(18)
            True
            sage: f = sandpiles.Fan(10,True)  # all nonsink vertices have deg 3
            sage: f.group_order() == fibonacci(20)
            True
        """
        f = graphs.WheelGraph(n)
        if n > 2:
            f.delete_edge(1, n - 1)
            if deg_three_verts:
                f.allow_multiple_edges(True)
                f.add_edges([(0, 1), (0, n - 1)])
            return Sandpile(f, 0)
        elif n == 1:
            return Sandpile(f, 0)
        elif n == 2:
            if deg_three_verts:
                return Sandpile({0: {1: 3}, 1: {0: 3}})
            else:
                return Sandpile(f, 0)
Пример #2
0
    def Cycle(self, n):
        """
        Sandpile on the cycle graph with `n` vertices.

        INPUT:

        -  ``n`` -- a non-negative integer

        OUTPUT:

        - Sandpile

        EXAMPLES::

            sage: s = sandpiles.Cycle(4)
            sage: s.edges()
            [(0, 1, 1),
             (0, 3, 1),
             (1, 0, 1),
             (1, 2, 1),
             (2, 1, 1),
             (2, 3, 1),
             (3, 0, 1),
             (3, 2, 1)]
        """
        return Sandpile(graphs.CycleGraph(n), 0)
Пример #3
0
    def Grid(self, m, n):
        """
        Sandpile on the diamond graph.

        INPUT:

        -  ``m``, ``n`` -- negative integers

        OUTPUT:

        - Sandpile

        EXAMPLES::

            sage: s = sandpiles.Grid(2,3)
            sage: s.vertices()
            [(0, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)]
            sage: s.invariant_factors()
            [1, 1, 1, 1, 1, 2415]
            sage: s = sandpiles.Grid(1,1)
            sage: s.dict()
            {(0, 0): {(1, 1): 4}, (1, 1): {(0, 0): 4}}
        """
        G = graphs.Grid2dGraph(m + 2, n + 2)
        G.allow_multiple_edges(
            True)  # to ensure each vertex ends up with degree 4
        V = [(i, j) for i in [0, m + 1]
             for j in range(n + 2)] + [(i, j) for j in [0, n + 1]
                                       for i in range(m + 2)]
        G.merge_vertices(V)
        return Sandpile(G, (0, 0))
Пример #4
0
    def Wheel(self, n):
        """
        Sandpile on the wheel graph with a total of `n` vertices.

        INPUT:

        -  ``n`` -- a non-negative integer

        OUTPUT:

        - Sandpile

        EXAMPLES::

            sage: w = sandpiles.Wheel(6)
            sage: w.invariant_factors()
            [1, 1, 1, 11, 11]
        """
        return Sandpile(graphs.WheelGraph(n), 0)
Пример #5
0
    def House(self):
        """
        Sandpile on the House graph.

        INPUT:

        None

        OUTPUT:

        - Sandpile

        EXAMPLES::

            sage: s = sandpiles.House()
            sage: s.invariant_factors()
            [1, 1, 1, 11]
        """
        return Sandpile(graphs.HouseGraph(), 0)
Пример #6
0
    def Diamond(self):
        """
        Sandpile on the diamond graph.

        INPUT:

        None

        OUTPUT:

        - Sandpile

        EXAMPLES::

            sage: s = sandpiles.Diamond()
            sage: s.invariant_factors()
            [1, 1, 8]
        """
        return Sandpile(graphs.DiamondGraph(), 0)
Пример #7
0
    def Complete(self, n):
        """
        The complete sandpile graph with `n` vertices.

        INPUT:

        -  ``n`` -- positive integer

        OUTPUT:

        - Sandpile

        EXAMPLES::

            sage: s = sandpiles.Complete(4)
            sage: s.group_order()
            16
            sage: sandpiles.Complete(3) == sandpiles.Cycle(3)
            True
        """
        return Sandpile(graphs.CompleteGraph(n), 0)